scholarly journals LncRNA LINC00998 inhibits the malignant glioma phenotype via the CBX3-mediated c-Met/Akt/mTOR axis

2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Haiping Cai ◽  
Yanjiao Yu ◽  
Xiangrong Ni ◽  
Cong Li ◽  
Yuanjun Hu ◽  
...  

AbstractLong noncoding RNAs (lncRNAs), once considered to be nonfunctional relics of evolution, are emerging as essential genes in tumor progression. However, the function and underlying mechanisms of lncRNAs in glioma remain unclear. This study aimed to investigate the role of LINC00998 in glioma progression. Through screening using TCGA database, we found that LINC00998 was downregulated in glioblastoma tissues and that low expression of LINC00998 was associated with poor prognosis. Overexpression of LINC00998 inhibited glioma cell proliferation in vitro and in vivo and blocked the G1/S cell cycle transition, which exerted a tumor-suppressive effect on glioma progression. Mechanistically, RNA pull-down and mass spectrometry results showed an interaction between LINC00998 and CBX3. IP assays demonstrated that LINC00998 could stabilize CBX3 and prevent its ubiquitination degradation. GSEA indicated that LINC00998 could regulate the c-Met/Akt/mTOR signaling pathway, which was further confirmed by a rescue assay using siRNA-mediated knockdown of CBX3 and the Akt inhibitor MK2206. In addition, dual-luciferase assays showed that miR-34c-5p could directly bind to LINC00998 and downregulate its expression. Our results identified LINC00998 as a novel tumor suppressor in glioma, and LINC00998 could be a novel prognostic biomarker, providing a strategy for precision therapy in glioma patients.

2021 ◽  
Author(s):  
kunwei niu ◽  
Shibin Qu ◽  
Xuan Zhang ◽  
Jimin Dai ◽  
Jianlin Wang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is often diagnosed at a late stage, when the prognosis is poor. The regulation of long non-coding RNAs (lncRNAs) plays a crucial role in HCC. However, the precise regulatory mechanisms of lncRNA signaling in HCC remain largely unknown. We study aim to investigate the underlying mechanisms of lncRNA (upregulated in hepatocellular carcinoma) URHC in HCC. Methods: RT-qPCR, fluorescence in situ hybridization (FISH) staining, EdU, colony formation, and tumor xenografts experiments were used to identify localized and biological effects of URHC on HCC cells in vitro and in vivo. The bioinformatics analysis, Dual-luciferase reporter assay, and rescue experiments revealed the potential mechanism of URHC.Results: URHC silencing may inhibit the HCC cells proliferation in vitro and in vivo. We found that URHC was mainly localized in the cytoplasm. The expression of miR-5007-3p was negatively regulated by URHC. And miR-5007-3p could reverse the effect of URHC in HCC cells. The expression of DNAJB9 was negatively regulated by miR-5007-3p but positively regulated by URHC. These suggesting of lncRNA-URHC positively regulated the level of DNAJB9 by sponging miR-5007-3p.Conclusion: Together, our study elucidated the role of URHC as a miRNA sponge in HCC, and shed new light on lncRNA-directed diagnostics and therapeutics in HCC.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi Xin She ◽  
Qing Yang Yu ◽  
Xiao Xiao Tang

AbstractInterleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy and drug development.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fengjie Jiang ◽  
Xiaozhu Tang ◽  
Chao Tang ◽  
Zhen Hua ◽  
Mengying Ke ◽  
...  

AbstractN6-methyladenosine (m6A) modification is the most prevalent modification in eukaryotic RNAs while accumulating studies suggest that m6A aberrant expression plays an important role in cancer. HNRNPA2B1 is a m6A reader which binds to nascent RNA and thus affects a perplexing array of RNA metabolism exquisitely. Despite unveiled facets that HNRNPA2B1 is deregulated in several tumors and facilitates tumor growth, a clear role of HNRNPA2B1 in multiple myeloma (MM) remains elusive. Herein, we analyzed the function and the regulatory mechanism of HNRNPA2B1 in MM. We found that HNRNPA2B1 was elevated in MM patients and negatively correlated with favorable prognosis. The depletion of HNRNPA2B1 in MM cells inhibited cell proliferation and induced apoptosis. On the contrary, the overexpression of HNRNPA2B1 promoted cell proliferation in vitro and in vivo. Mechanistic studies revealed that HNRNPA2B1 recognized the m6A sites of ILF3 and enhanced the stability of ILF3 mRNA transcripts, while AKT3 downregulation by siRNA abrogated the cellular proliferation induced by HNRNPA2B1 overexpression. Additionally, the expression of HNRNPA2B1, ILF3 and AKT3 was positively associated with each other in MM tissues tested by immunohistochemistry. In summary, our study highlights that HNRNPA2B1 potentially acts as a therapeutic target of MM through regulating AKT3 expression mediated by ILF3-dependent pattern.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiaofeng Qi ◽  
Wengguang Xu ◽  
Junqi Xie ◽  
Yufeng Wang ◽  
Shengwei Han ◽  
...  

Abstract Resistance towards chemotherapy is a common complication in treatment of oral cancers, which leads to treatment failure and poor outcome. In recent years, a growing body of evidence has shown that tumour hypoxia significantly contributes to chemoresistance. Metformin, a widely used oral hypoglycaemic drug, can reportedly potentiate the efficacy of chemotherapeutic drugs in various cancers; however, the underlying mechanisms are intricate and have not been fully understood. In this study, we explored the role of metformin in chemosensitivity of oral squamous cell carcinoma cells (OSCC) to cisplatin both in vitro and in vivo, and attempted to elucidate its possible underlying mechanisms. Encouragingly, we found that metformin synergistically enhanced cisplatin cytotoxicity and reversed the chemoresistance to certain extent. This mechanism could likely be related with inhibition of the NF-κB/HIF-1α signal axis and lead to the downregulation of hypoxia-regulated genes products. Therefore, metformin could serve as a chemosensitiser for cisplatin-based regimens for OSCC, thereby providing a theoretical basis for future use in the treatment of oral cancers.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Simone A Nish ◽  
Dominik Schenten ◽  
F Thomas Wunderlich ◽  
Scott D Pope ◽  
Yan Gao ◽  
...  

Innate immune recognition is critical for the induction of adaptive immune responses; however the underlying mechanisms remain incompletely understood. In this study, we demonstrate that T cell-specific deletion of the IL-6 receptor α chain (IL-6Rα) results in impaired Th1 and Th17 T cell responses in vivo, and a defect in Tfh function. Depletion of Tregs in these mice rescued the Th1 but not the Th17 response. Our data suggest that IL-6 signaling in effector T cells is required to overcome Treg-mediated suppression in vivo. We show that IL-6 cooperates with IL-1β to block the suppressive effect of Tregs on CD4+ T cells, at least in part by controlling their responsiveness to IL-2. In addition, although IL-6Rα-deficient T cells mount normal primary Th1 responses in the absence of Tregs, they fail to mature into functional memory cells, demonstrating a key role for IL-6 in CD4+ T cell memory formation.


2010 ◽  
Vol 16 (5) ◽  
pp. 1402-1415 ◽  
Author(s):  
Marius Grzelinski ◽  
Olaf Pinkenburg ◽  
Thomas Büch ◽  
Maike Gold ◽  
Stefanie Stohr ◽  
...  

1985 ◽  
Vol 162 (4) ◽  
pp. 1161-1181 ◽  
Author(s):  
N Minato ◽  
T Amagai ◽  
J Yodoi ◽  
T Diamanstein ◽  
S Kano

Using cloned lines with the morphology of large granular lymphocytes (LGL) from BALB/c mice, we studied the exact requirements for proliferation and their functional characteristics, as well as their regulation. Although these cloned LGL lines were interleukin 2 (IL-2) dependent for growth, experiments using human recombinant IL-2 (rIL-2), known to be active on murine cells, indicated that IL-2 was a necessary but not sufficient factor. Coexistance of normal macrophages in addition to rIL-2 was found to support continuous proliferation of cloned LGL in vitro. This role of macrophages could be replaced by partially purified IL-1 derived from macrophage-conditioned medium. An IL-2 binding assay using 125I-rIL-2 suggested that the role of normal macrophages was to selectively induce and/or maintain high affinity IL-2 receptors (IL-2R) (Kd, 0.2-0.5 nM) without affecting low affinity ones (Kd, 10-30 nM). Functional studies indicated that most of the LGL clones killed various combinations of representative groups of natural killer (NK)-susceptible target cells, including leukemic cells (YAC-1, RL male 1), virus-infected cells (HeLa-measles, HeLa-herpes simplex virus), and normal bone marrow cells (BMC), whereas none of them affected any of NK-resistant target cells, including uninfected HeLa cells. Some of these clones also suppressed in vitro hematopoiesis. Such characteristic cytotoxic spectra, as well as serological phenotypes (Thy-1+, Lyt-1-2-, asialo GM1-positive, T200+, TdT-, Fc receptor-positive) indicated that these LGL clones exactly represent endogenous NK cells, rather than a variety of anomalous killer cells generated in various culture conditions. Although there was significant heterogeneity of cytotoxic spectrum among LGL clones, no clonotypic distribution of specificities was observed. Normal macrophages were found to modulate the functional expression of LGL clones. They augmented the cytotoxic potential of the clones against leukemic and virus-infected targets, but suppressed intrinsic reactivity against normal BMC. Similarly, LGL clones maintained with macrophages showed much less suppressive effect on in vitro hematopoiesis. The present observations on the interaction of cloned LGL and normal macrophages provide a basic explanation for the mechanisms by which the immediate responsiveness to IL-2 of the NK effector system, without exogenous stimulation, and the functional selectivity toward abnormal rather than normal cells, are actively maintained in vivo.


2013 ◽  
Vol 16 (2) ◽  
pp. 217-227 ◽  
Author(s):  
X. Gu ◽  
L. Yao ◽  
G. Ma ◽  
L. Cui ◽  
Y. Li ◽  
...  

2014 ◽  
Vol 306 (9) ◽  
pp. G759-G768 ◽  
Author(s):  
Fanyin Meng ◽  
Sharon DeMorrow ◽  
Julie Venter ◽  
Gabriel Frampton ◽  
Yuyan Han ◽  
...  

Substance P (SP) promotes cholangiocyte growth during cholestasis by activating its receptor, NK1R. SP is a proteolytic product of tachykinin (Tac1) and is deactivated by membrane metalloendopeptidase (MME). This study aimed to evaluate the functional role of SP in the regulation of cholangiocarcinoma (CCA) growth. NK1R, Tac1, and MME expression and SP secretion were assessed in human CCA cells and nonmalignant cholangiocytes. The proliferative effects of SP (in the absence/presence of the NK1R inhibitor, L-733,060) and of L-733,060 were evaluated. In vivo, the effect of L-733,060 treatment or MME overexpression on tumor growth was evaluated by using a xenograft model of CCA in nu/nu nude mice. The expression of Tac1, MME, NK1R, PCNA, CK-19, and VEGF-A was analyzed in the resulting tumors. Human CCA cell lines had increased expression of Tac1 and NK1R, along with reduced levels of MME compared with nonmalignant cholangiocytes, resulting in a subsequent increase in SP secretion. SP treatment increased CCA cell proliferation in vitro, which was blocked by L-733,060. Treatment with L-733,060 alone inhibited CCA proliferation in vitro and in vivo. Xenograft tumors derived from MME-overexpressed human Mz-ChA-1 CCA cells had a slower growth rate than those derived from control cells. Expression of PCNA, CK-19, and VEGF-A decreased, whereas MME expression increased in the xenograft tumors treated with L-733,060 or MME-overexpressed xenograft tumors compared with controls. The study suggests that SP secreted by CCA promotes CCA growth via autocrine pathway. Blockade of SP secretion and NK1R signaling may be important for the management of CCA.


Sign in / Sign up

Export Citation Format

Share Document