scholarly journals Cuticle and skin cell walls have common and unique roles in grape berry splitting

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ben-Min Chang ◽  
Markus Keller

AbstractThe skin protects a fruit from environmental stresses and supports the fruit’s structure. Failure of the skin leads to fruit splitting and may compromise commercial production for fruit growers. The mechanical properties of the cuticle and skin cell walls might influence the splitting susceptibility of fleshy fruits. Thin shell theory and fracture mechanics were utilized in this study to target the potential factors contributing to splitting susceptibility. The study analyzed the structure of the cuticle and epidermis in ripening grape berries and examined the temporal dynamics of berry splitting. Cuticular waxes were partially removed, and skin cell walls were manipulated using wall stiffening and loosening solutions that altered reactions involving hydrogen peroxide. A more than twofold difference in cuticle thickness among grape cultivars did not account for their differences in splitting resistance. However, while removing predominantly epicuticular wax did not alter the berries’ splitting resistance, their surface appearance and increasing yield strength following partial wax removal support the notion that cuticular waxes contribute to berry mechanical properties. Immersing berries in H2O2-based cell wall loosening solutions increased the splitting probability and accelerated berry splitting, whereas cell wall stiffening solutions decreased the splitting probability and delayed berry splitting. These results showed that both cuticle and skin cell walls contribute to the mechanical properties of grape berries and to their splitting resistance. The results also suggest that the two current explanations for fruit splitting, the critical turgor model and the zipper model, should be viewed as complementary rather than incompatible.

2004 ◽  
Vol 94 (5) ◽  
pp. 438-445 ◽  
Author(s):  
Andrea Ficke ◽  
David M. Gadoury ◽  
Robert C. Seem ◽  
Dale Godfrey ◽  
Ian B. Dry

Grape berries are highly susceptible to powdery mildew 1 week after bloom but acquire ontogenic resistance 2 to 3 weeks later. We recently demonstrated that germinating conidia of the grape powdery mildew pathogen (Uncinula necator) cease development before penetration of the cuticle on older resistant berries. The mechanism that halts U. necator at that particular stage was not known. Several previous studies investigated potential host barriers or cell responses to powdery mildew in berries and leaves, but none included observation of the direct effect of these factors on pathogen development. We found that cuticle thickness increased with berry age, but that ingress by the pathogen halted before formation of a visible penetration pore. Cell wall thickness remained unchanged over the first 4 weeks after bloom, the time during which berries progressed from highly susceptible to nearly immune. Autofluorescent polyphenolic compounds accumulated at a higher frequency beneath appressoria on highly susceptible berries than on highly resistant berries; and oxidation of the above phenolics, indicated by cell discoloration, developed at a significantly higher frequency on susceptible berries. Beneath the first-formed appressoria of all germinated conidia, papillae occurred at a significantly higher frequency on 2- to 5-day-old berries than on 30- to 31-day-old fruit. The relatively few papillae observed on older berries were, in most cases (82.8 to 97.3%), found beneath appressoria of conidia that had failed to produce secondary hyphae. This contrasted with the more abundantly produced papillae on younger berries, where only 35.4 to 41.0% were located beneath appressoria of conidia that had failed to produce secondary hyphae. A pathogenesis-related gene (VvPR-1) was much more highly induced in susceptible berries than in resistant berries after inoculation with U. necator. In contrast, a germin-like protein (VvGLP3) was expressed within 16 h of inoculation in resistant, but not in susceptible berries. Our results suggest that several putative barriers to infection, i.e., cuticle and cell wall thickness, antimicrobial phenolics, and two previously described pathogenesis-related proteins, are not principal causes in halting pathogen ingress on ontogenically resistant berries, but rather that infection is halted by one or more of the following: (i) a preformed physical or biochemical barrier near the cuticle surface, or (ii) the rapid synthesis of an antifungal compound in older berries during the first few hours of the infection process.


Fibers ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 6 ◽  
Author(s):  
Camille Goudenhooft ◽  
David Siniscalco ◽  
Olivier Arnould ◽  
Alain Bourmaud ◽  
Olivier Sire ◽  
...  

HortScience ◽  
1991 ◽  
Vol 26 (6) ◽  
pp. 762B-762
Author(s):  
Martin C. Goffinet ◽  
Roger C. Pearson

Clusters of Vitis labruscana cv. Concord were grown either in full sun or canopy shade, and either not sprayed or sprayed with 3.4 Kg/Ha chlorothalonil every 2 wk from pre-bloom to veraison. Only sun-exposed, sprayed fruit produced skin russeting. Clusters of the very susceptible V. vinifera cv. Rosette were grown in direct sun, sprayed with chlorothalonil 4 times from bloom to veraison, in the presence or absence of purported anti-russeting agents. Heavy russet occurred in all treatments. Russet initiation was similar in the 2 cvs.: epidermal cells first died beneath spray residue in full sun, a phellogen then arose in the hypodermis, followed by periderm. Epidermal death began in `Rosette' within a wk of the bloom spray, but in `Concord' only after 2-3 wk post bloom and 3 sprays. `Concord' russet generally appeared as patches or scabs, whereas `Rosette' russet ranged from freckles, welts, scabs to large smooth burnished areas. In both cvs., unbroken russet consisted of uniform layers of phellum. New, deeper periderm initials arose beneath checks and cracks which formed as fruit enlarged. In `Concord', but not `Rosette', the daughter cells of each such initial were often enclosed in the original cell wall. In all cases of russet, cell walls in the periderm were suberized and sometimes lignified. Cells also contained much phenolic material.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 646 ◽  
Author(s):  
Wang ◽  
Chen ◽  
Xie ◽  
Cai ◽  
Yuan ◽  
...  

The local chemistry and mechanics of the control and phenol formaldehyde (PF) resin modified wood cell walls were analyzed to illustrate the modification mechanism of wood. Masson pine (Pinus massoniana Lamb.) is most widely distributed in the subtropical regions of China. However, the dimensional instability and low strength of the wood limits its use. Thus, the wood was modified by PF resin at concentrations of 15%, 20%, 25%, and 30%, respectively. The density, surface morphology, chemical structure, cell wall mechanics, shrinking and swelling properties, and macro-mechanical properties of Masson pine wood were analyzed to evaluate the modification effectiveness. The morphology and Raman spectra changes indicated that PF resin not only filled in the cell lumens, but also penetrated into cell walls and interacted with cell wall polymers. The filling and diffusing of resin in wood resulted in improved dimensional stability, such as lower swelling and shrinking coefficients, an increase in the elastic modulus (Er) and hardness (H) of wood cell walls, the hardness of the transverse section and compressive strength of the wood. Both the dimensional stability and mechanical properties improved as the PF concentration increased to 20%; that is, a PF concentration of 20% may be preferred to modify Masson pine wood.


Coatings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 449 ◽  
Author(s):  
Yan Wu ◽  
Yingchun Sun ◽  
Feng Yang ◽  
Haiqiao Zhang ◽  
Yajing Wang

The waterborne coating uses water as its solvent, which will partially dissolve wood extractives when it is applied to wood surfaces. This influences both the coating curing process and the mechanical properties of the cured coating. To investigate these influences, the mechanical properties of waterborne polyacrylic coating on control and extractive-free wood surfaces were investigated by nanoindentation. Reductions to elastic modulus (Er) and hardness (H) of the coating layer was observed in the wood cell walls adjacent to or away from coating layers. Extraction treatment resulted in significant decrease of the Er and H of the coating layer on extractive-free wood surface comparing with control wood, but the values slightly increased for extractive-free wood cell walls compared to a control. Er and H of coating in wood cell lumen were higher than the average value of coating layer on wood surface in both the control and extractive-free wood. The Er of wood cell wall without coating filled in lumen was significantly higher than those of filling with coating. However, there was no distinct difference of H. The Er and H of CCML in extractive-free wood were 15% and 6% lower than those in control ones, respectively.


Holzforschung ◽  
2002 ◽  
Vol 56 (4) ◽  
pp. 395-401 ◽  
Author(s):  
W. Gindl

Summary Cell-wall lignin content and composition, as well as microfibril angle of normal and compression wood samples were determined prior to mechanical testing in compression parallel to the grain. No effect of increased lignin content on the Young's modulus in compression wood was discernible because of the dominating influence of microfibril angle. In contrast, compressive strength of compression wood was not negatively affected by the high microfibril angle. It is proposed that the observed high lignification in compression wood increases the resistance of the cell walls to compression failure. An increased percentage of p-hydroxyphenylpropane units observed in compression wood lignin may also contribute to the comparably high compressive strength of compression wood.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 413
Author(s):  
Marie André ◽  
Soizic Lacampagne ◽  
Audrey Barsacq ◽  
Etienne Gontier ◽  
Melina Petrel ◽  
...  

This work investigated the structural, biochemical, and molecular characteristics of grape skin cell wall during ripening, related to susceptibility to Botrytis cinerea. The comparative study between the two main grape cultivars in Champagne region, Pinot noir and Chardonnay, quantified: (1) the maturity and physical profile of grape skin; (2) the morphological characteristics; (3) soluble pectic polysaccharides located in grape skin cell walls; and (4) the gene expression of the two main degrading enzymes (VvPME1 and VvPG1) and PME activity. During the maturation period, the grape skins of the two cultivars appear different in their structure and composition. Chardonnay is characterized by higher relative humidity (RH) and level of VvPG1 expression, lower disease incidence and penetrometry values, and thicker cell walls than Pinot noir skins. Thus, the cell wall composition is sufficiently different between grape varieties from the same area to allow their discrimination and could be used to better manage the harvest date.


OENO One ◽  
1997 ◽  
Vol 31 (3) ◽  
pp. 127 ◽  
Author(s):  
Jean-Pierre Robin ◽  
Philippe Abbal ◽  
Jean-Michel Salmon

<p style="text-align: justify;">Mechanical properties of Shiraz and Gamay grape berries were studied in relation with their maturity state using the Penelaup<sup>TM</sup> rheometer. The analysis of the constrains registered during berry crushing with the flat tool of the device, up to the pellicular tearing, allowed the definition of different rheological parameters and the characterisation of mechanical behaviour of grape and its evolution with the degree of ripening. The analysis of the deformability curves shows, independently of the cultivar, that berry behaviour is not elastical except for some berries at the beginning and at the end of the ripening. This behaviour can be characterised by two indexes expressing the curvature sense of deformability curves, the curvature degree in a way reflecting the turgescence state of the grape. Berry firmness was also considered in two different ways: the initial firmness which represents the elasticity coefficient of the fruit at the beginning of the deformation, and the bursting firmness which can be considered as the pellicular elasticity coefficient. Others parameters, as the pellicular strength which can be expressed from the value of the displacement at berry bursting and the energy used for the deformation were also defined. The evolution of these different parameters during ripening confirms that berry softening at the véraison time depends on the cultivar and on environmental conditions as the vintage. The analysis of the evolutions also indicates that pellicular strength is maximum at this crucial period of berry development.</p>


Author(s):  
Anna Petrova ◽  
Tatyana Gorshkova ◽  
Liudmila Kozlova

Abstract To test the hypothesis that particular tissues can control root growth, we analysed mechanical properties of cell walls belonging to different tissues of the apical part of maize root using atomic-force microscopy. The dynamics of properties during elongation growth were characterised in four consecutive zones of the root. The extensive immunochemical characterization and quantification were used to establish the polysaccharide motif(s) related to changes in cell wall mechanics. Cell transition from division to elongation was coupled to the decrease in the elasticity modulus in all root tissues. Low values of moduli were retained in the elongation zone and increased in late elongation zone. No relationship between the immunolabelling pattern and mechanical properties of the cell walls was revealed. When measured values of elasticity moduli and turgor pressure were used in the computational simulation, this resulted in an elastic response of modelled root and the distribution of stress and strain similar with those observed in vivo. In all analysed root zones, cell walls of the inner cortex displayed moduli of elasticity that were maximal or comparable to the maximal values among all tissues. Thus, we propose that the inner cortex serves as a growth-limiting tissue in maize roots.


Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 172 ◽  
Author(s):  
Liudmila Kozlova ◽  
Anna Petrova ◽  
Boris Ananchenko ◽  
Tatyana Gorshkova

The mechanical properties of cell walls play a vital role in plant development. Atomic-force microscopy (AFM) is widely used for characterization of these properties. However, only surface or isolated plant cells have been used for such investigations, at least as non-embedded samples. Theories that claim a restrictive role of a particular tissue in plant growth cannot be confirmed without direct measurement of the mechanical properties of internal tissue cell walls. Here we report an approach of assessing the nanomechanical properties of primary cell walls in the inner tissues of growing plant organs. The procedure does not include fixation, resin-embedding or drying of plant material. Vibratome-derived longitudinal and transverse sections of maize root were investigated by AFM in a liquid cell to track the changes of cell wall stiffness and elasticity accompanying elongation growth. Apparent Young’s modulus values and stiffness of stele periclinal cell walls in the elongation zone of maize root were lower than in the meristem, i.e., cell walls became more elastic and less resistant to an applied force during their elongation. The trend was confirmed using either a sharp or spherical probe. The availability of such a method may promote our understanding of individual tissue roles in the plant growth processes.


Sign in / Sign up

Export Citation Format

Share Document