scholarly journals Genetic perturbation of PU.1 binding and chromatin looping at neutrophil enhancers associates with autoimmune disease

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stephen Watt ◽  
Louella Vasquez ◽  
Klaudia Walter ◽  
Alice L. Mann ◽  
Kousik Kundu ◽  
...  

AbstractNeutrophils play fundamental roles in innate immune response, shape adaptive immunity, and are a potentially causal cell type underpinning genetic associations with immune system traits and diseases. Here, we profile the binding of myeloid master regulator PU.1 in primary neutrophils across nearly a hundred volunteers. We show that variants associated with differential PU.1 binding underlie genetically-driven differences in cell count and susceptibility to autoimmune and inflammatory diseases. We integrate these results with other multi-individual genomic readouts, revealing coordinated effects of PU.1 binding variants on the local chromatin state, enhancer-promoter contacts and downstream gene expression, and providing a functional interpretation for 27 genes underlying immune traits. Collectively, these results demonstrate the functional role of PU.1 and its target enhancers in neutrophil transcriptional control and immune disease susceptibility.

Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1255
Author(s):  
Chaorui Guo ◽  
Inga Sileikaite ◽  
Michael J. Davies ◽  
Clare L. Hawkins

Myeloperoxidase (MPO) is involved in the development of many chronic inflammatory diseases, in addition to its key role in innate immune defenses. This is attributed to the excessive production of hypochlorous acid (HOCl) by MPO at inflammatory sites, which causes tissue damage. This has sparked wide interest in the development of therapeutic approaches to prevent HOCl-induced cellular damage including supplementation with thiocyanate (SCN−) as an alternative substrate for MPO. In this study, we used an enzymatic system composed of glucose oxidase (GO), glucose, and MPO in the absence and presence of SCN−, to investigate the effects of generating a continuous flux of oxidants on macrophage cell function. Our studies show the generation of hydrogen peroxide (H2O2) by glucose and GO results in a dose- and time-dependent decrease in metabolic activity and cell viability, and the activation of stress-related signaling pathways. Interestingly, these damaging effects were attenuated by the addition of MPO to form HOCl. Supplementation with SCN−, which favors the formation of hypothiocyanous acid, could reverse this effect. Addition of MPO also resulted in upregulation of the antioxidant gene, NAD(P)H:quinone acceptor oxidoreductase 1. This study provides new insights into the role of MPO in the modulation of macrophage function, which may be relevant to inflammatory pathologies.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Giuseppe Baviera ◽  
Maria Chiara Leoni ◽  
Lucetta Capra ◽  
Francesca Cipriani ◽  
Giorgio Longo ◽  
...  

The Italian interest group (IG) on atopic eczema and urticaria is member of the Italian Society of Allergology and Immunology. The aim of our IG is to provide a platform for scientists, clinicians, and experts. In this review we discuss the role of skin microbiota not only in healthy skin but also in skin suffering from atopic dermatitis (AD). A Medline and Embase search was conducted for studies evaluating the role of skin microbiota. We examine microbiota composition and its development within days after birth; we describe the role of specific groups of microorganisms that colonize distinct anatomical niches and the biology and clinical relevance of antimicrobial peptides expressed in the skin. Specific AD disease states are characterized by concurrent and anticorrelated shifts in microbial diversity and proportion ofStaphylococcus. These organisms may protect the host, defining them not as simple symbiotic microbes but rather as mutualistic microbes. These findings reveal links between microbial communities and inflammatory diseases such as AD and provide novel insights into global shifts of bacteria relevant to disease progression and treatment. This review also highlights recent observations on the importance of innate immune systems and the relationship with normal skin microflora for the maintenance of healthy skin.


2021 ◽  
Vol 2 ◽  
Author(s):  
Latifa Koussih ◽  
Samira Atoui ◽  
Omar Tliba ◽  
Abdelilah S. Gounni

Pentraxins are soluble pattern recognition receptors that play a major role in regulating innate immune responses. Through their interaction with complement components, Fcγ receptors, and different microbial moieties, Pentraxins cause an amplification of the inflammatory response. Pentraxin-3 is of particular interest since it was identified as a biomarker for several immune-pathological diseases. In allergic asthma, pentraxin-3 is produced by immune and structural cells and is up-regulated by pro-asthmatic cytokines such as TNFα and IL-1β. Strikingly, some recent experimental evidence demonstrated a protective role of pentraxin-3 in chronic airway inflammatory diseases such as allergic asthma. Indeed, reduced pentraxin-3 levels have been associated with neutrophilic inflammation, Th17 immune response, insensitivity to standard therapeutics and a severe form of the disease. In this review, we will summarize the current knowledge of the role of pentraxin-3 in innate immune response and discuss the protective role of pentraxin-3 in allergic asthma.


2016 ◽  
Vol 397 (12) ◽  
pp. 1315-1333 ◽  
Author(s):  
Isabel Meininger ◽  
Daniel Krappmann

Abstract The CARMA1-BCL10-MALT1 (CBM) signalosome triggers canonical NF-κB signaling and lymphocyte activation upon antigen-receptor stimulation. Genetic studies in mice and the analysis of human immune pathologies unveiled a critical role of the CBM complex in adaptive immune responses. Great progress has been made in elucidating the fundamental mechanisms that dictate CBM assembly and disassembly. By bridging proximal antigen-receptor signaling to downstream signaling pathways, the CBM complex exerts a crucial scaffolding function. Moreover, the MALT1 subunit confers a unique proteolytic activity that is key for lymphocyte activation. Deregulated ‘chronic’ CBM signaling drives constitutive NF-κB signaling and MALT1 activation, which contribute to the development of autoimmune and inflammatory diseases as well as lymphomagenesis. Thus, the processes that govern CBM activation and function are promising targets for the treatment of immune disorders. Here, we summarize the current knowledge on the functions and mechanisms of CBM signaling in lymphocytes and how CBM deregulations contribute to aberrant signaling in malignant lymphomas.


2019 ◽  
Vol 51 (11) ◽  
pp. 1087-1095 ◽  
Author(s):  
Zhenrui Cao ◽  
Yanhao Wang ◽  
Zhimin Long ◽  
Guiqiong He

Abstract Autophagy, a metabolic pathway that plays an important role in maintaining the dynamic balance of cells, has two types, i.e. non-selective autophagy and selective autophagy. The role of non-selective autophagy is primarily to allow cells to circulate nutrients in an energy-limited environment, while selective autophagy primarily cleans up the organelles inside the cells to maintain the cell structure. The NLRP3 inflammasome is an innate immune response produced by the organism that can promote the secretion of interleukin-1β and interleukin-18 through caspase-1 activation and resist the damage of some pathogens. However, when the NLRP3 inflammasome is overactivated, it can cause various inflammatory diseases, such as inflammatory liver disease and inflammatory bowel disease. Many previous studies have shown that autophagy can inhibit the NLRP3 inflammasome, while in recent years, new studies have found that autophagy can also promote the NLRP3 inflammasome in some cases, and the NLRP3 inflammasome can, in turn, affect autophagy. In this review, the interaction between autophagy and the NLRP3 inflammasome is explored, and then the application of this interaction in disease treatment is discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Dominique M. A. Bullens ◽  
Ann Decraene ◽  
Sven Seys ◽  
Lieven J. Dupont

Since the discovery of IL-17 in 1995 as a T-cell cytokine, inducing IL-6 and IL-8 production by fibroblasts, and the report of a separate T-cell lineage producing IL-17(A), called Th17 cells, in 2005, the role of IL-17 has been studied in several inflammatory diseases. By inducing IL-8 production and subsequent neutrophil attraction towards the site of inflammation, IL-17A can link adaptive and innate immune responses. More specifically, its role in respiratory diseases has intensively been investigated. We here review its role in human respiratory diseases and try to unravel the question whether IL-17A only provides a link between the adaptive and innate respiratory immunity or whether this cytokine might also be locally produced by innate immune cells. We furthermore briefly discuss the possibility to reduce local IL-17A production as a treatment option for respiratory diseases.


2021 ◽  
Vol 22 (18) ◽  
pp. 9879
Author(s):  
Anna Krupa ◽  
Irina Kowalska

The kynurenine pathway (KP) is highly regulated in the immune system, where it promotes immunosuppression in response to infection or inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the main enzyme of KP, has a broad spectrum of activity on immune cells regulation, controlling the balance between stimulation and suppression of the immune system at sites of local inflammation, relevant to a wide range of autoimmune and inflammatory diseases. Various autoimmune diseases, among them endocrinopathies, have been identified to date, but despite significant progress in their diagnosis and treatment, they are still associated with significant complications, morbidity, and mortality. The precise cellular and molecular mechanisms leading to the onset and development of autoimmune disease remain poorly clarified so far. In breaking of tolerance, the cells of the innate immunity provide a decisive microenvironment that regulates immune cells’ differentiation, leading to activation of adaptive immunity. The current review provided a comprehensive presentation of the known role of IDO1 and KP activation in the regulation of the innate and adaptive arms of the immune system. Significant attention has been paid to the immunoregulatory role of IDO1 in the most prevalent, organ-specific autoimmune endocrinopathies—type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis.


2021 ◽  
pp. 108402
Author(s):  
S.P. Déo-Gracias Berry ◽  
Camille Dossou ◽  
Ali Kashif ◽  
Niusha Sharifinejad ◽  
Gholamreza Azizi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document