scholarly journals Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuyi Wu ◽  
Jianmeng Xu ◽  
Leiyan Zou ◽  
Shulu Luo ◽  
Run Yao ◽  
...  

AbstractPeri-implant infection is one of the biggest threats to the success of dental implant. Existing coatings on titanium surfaces exhibit rapid decrease in antibacterial efficacy, which is difficult to promisingly prevent peri-implant infection. Herein, we report an N-halamine polymeric coating on titanium surface that simultaneously has long-lasting renewable antibacterial efficacy with good stability and biocompatibility. Our coating is powerfully biocidal against both main pathogenic bacteria of peri-implant infection and complex bacteria from peri-implantitis patients. More importantly, its antibacterial efficacy can persist for a long term (e.g., 12~16 weeks) in vitro, in animal model, and even in human oral cavity, which generally covers the whole formation process of osseointegrated interface. Furthermore, after consumption, it can regain its antibacterial ability by facile rechlorination, highlighting a valuable concept of renewable antibacterial coating in dental implant. These findings indicate an appealing application prospect for prevention and treatment of peri-implant infection.

2021 ◽  
Vol 22 (3) ◽  
pp. 1441
Author(s):  
Antonio Scarano ◽  
Tiziana Orsini ◽  
Fabio Di Carlo ◽  
Luca Valbonetti ◽  
Felice Lorusso

Background—the graphene-doping procedure represents a useful procedure to improve the mechanical, physical and biological response of several Polymethyl methacrylate (PMMA)-derived polymers and biomaterials for dental applications. The aim of this study was to evaluate osseointegration of Graphene doped Poly(methyl methacrylate) (GD-PMMA) compared with PMMA as potential materials for dental implant devices. Methods—eighteen adult New Zealand white male rabbits with a mean weight of approx. 3000 g were used in this research. A total of eighteen implants of 3.5 mm diameter and 11 mm length in GD-PMMA and eighteen implants in PMMA were used. The implants were placed into the articular femoral knee joint. The animals were sacrificed after 15, 30 and 60 days and the specimens were evaluated by µCT and histomorphometry. Results—microscopically, all 36 implants, 18 in PMMA and 18 in DG-PMMA were well-integrated into the bone. The implants were in contact with cortical bone along the upper threads, while the lower threads were in contact with either newly formed bone or with marrow spaces. The histomorphometry and µCT evaluation showed that the GP-PMMA and PMMA implants were well osseointegrated and the bone was in direct contact with large portions of the implant surfaces, including the space in the medullary canal. Conclusions—in conclusion, the results suggest that GD-PMMA titanium surfaces enhance osseointegration in rabbit femurs. This encourages further research to obtain GD-PMMA with a greater radiopacity. Also, further in vitro and vivo animal studies are necessary to evaluate a potential clinical usage for dental implant applications.


2018 ◽  
Vol 132 (9) ◽  
pp. 959-983 ◽  
Author(s):  
Karlhans Fru Che ◽  
Ellen Tufvesson ◽  
Sara Tengvall ◽  
Elisa Lappi-Blanco ◽  
Riitta Kaarteenaho ◽  
...  

Long-term tobacco smokers with chronic obstructive pulmonary disease (COPD) or chronic bronchitis display an excessive accumulation of neutrophils in the airways; an inflammation that responds poorly to established therapy. Thus, there is a need to identify new molecular targets for the development of effective therapy. Here, we hypothesized that the neutrophil-mobilizing cytokine interleukin (IL)-26 (IL-26) is involved in airway inflammation amongst long-term tobacco smokers with or without COPD, chronic bronchitis or colonization by pathogenic bacteria. By analyzing bronchoalveolar lavage (BAL), bronchail wash (BW) and induced sputum (IS) samples, we found increased extracellular IL-26 protein in the airways of long-term smokers in vivo without further increase amongst those with clinically stable COPD. In human alveolar macrophages (AM) in vitro, the exposure to water-soluble tobacco smoke components (WTC) enhanced IL-26 gene and protein. In this cell model, the same exposure increased gene expression of the IL-26 receptor complex (IL10R2 and IL20R1) and nuclear factor κ B (NF-κB); a proven regulator of IL-26 production. In the same cell model, recombinant human IL-26 in vitro caused a concentration-dependent increase in the gene expression of NF-κB and several pro-inflammatory cytokines. In the long-term smokers, we also observed that extracellular IL-26 protein in BAL samples correlates with measures of lung function, tobacco load, and several markers of neutrophil accumulation. Extracellular IL-26 was further increased in long-term smokers with exacerbations of COPD (IS samples), with chronic bronchitis (BAL samples ) or with colonization by pathogenic bacteria (IS and BW samples). Thus, IL-26 in the airways emerges as a promising target for improving the understanding of the pathogenic mechanisms behind several pulmonary morbidities in long-term tobacco smokers.


Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 89 ◽  
Author(s):  
Shahabe Abullais Saquib ◽  
Nabeeh Abdullah AlQahtani ◽  
Irfan Ahmad ◽  
Mohammed Abdul Kader ◽  
Sami Saeed Al Shahrani ◽  
...  

Background: In the past few decades focus of research has been toward herbal medicines because of growing bacterial resistance and side effects of antimicrobial agents. The extract derived from the plants may increase the efficacy of antibiotics when used in combination against pathogenic bacteria. In the current study, the synergistic antibacterial efficacy of plant extracts in combination with antibiotics has been assessed on selected periodontal pathogens. Methods: Ethanolic extracts were prepared from Salvadora persica (Miswak) and Cinnamomum zeylanicum (Ceylon cinnamon), by the soxhalate method. Plaque samples were collected from clinical periodontitis patients to isolate and grow the periodontal pathobionts under favorable conditions. Susceptibility of bacteria to the extracts was assessed by gauging the diameter of the inhibition zones. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of plant extracts were determined against each bacterium. Synergistic activity of plants extract in combination with antibiotics against the bacteria was also assessed by measuring the diameter of the inhibition zones. Results: Ethanolic extract of both the plants showed an inhibitory effect on the proliferation and growth of all four strains of periodontal pathobionts. Maximum antibacterial activity was exhibited by C. zeylanicum against Tannerella forsythia (MIC = 1.56 ± 0.24 mg/mL, MBC = 6.25 ± 0.68 mg/mL), whereas among all the studied groups the minimum activity was reported by C. zeylanicum against Aggregatibacter actinomycetemcomitans the (MIC = 12.5 ± 3.25 mg/mL, MBC = 75 ± 8.23 mg/mL). Combination of herbal extracts with different antibiotics revealed a synergistic antibacterial effect. The best synergism was exhibited by S. persica with metronidazole against A. actinomycetemcomitans (27 ± 1.78). Conclusions: Current in vitro study showed variable antibacterial activity by experimented herbal extracts against periodontal pathobionts. The synergistic test showed significant antibacterial activity when plant extracts were combined with antibiotics.


2012 ◽  
Vol 586 ◽  
pp. 39-44 ◽  
Author(s):  
Yan Hua Zheng ◽  
Jin Bo Li ◽  
Xuan Yong Liu ◽  
Jiao Sun

Insufficience of osteogenesis and antimicrobial effect have been still impacted the long term clinical success rate of dental implants. A nanostructured titanium surface prepared by hydrothermal treatment with H2O2 was evaluated on its osteoblastic viability and antibacterial effect. Samples were divided into 2 groups: untreated pure titanium surface (Ti) and a nanostructured titanium surface (NT). The antibacterial activities against S.mutans and C.albicans were measured by film applicator coating assay, as well as the live/dead bacteria stain. The osteoblastic viability was investigated by SEM and MTT assay. Results showed that the active microbia on NT was reduced at 24h (P<0.05) significantly according to the live/dead bacteria stain and film applicator coating assay, which could also enhance the osteoblast viability. Therefore, a nanostructured titanium surface exhibits good antibacterial activity on S.mutans and C.albicans, and promoting osteoblast viability, which will be a potential kind of dental implant material.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Carlos Nelson Elias ◽  
Patricia Abdo Gravina ◽  
Costa e Silva Filho ◽  
Pedro Augusto de Paula Nascente

Statement of Problem. The chemical or topographic modification of the dental implant surface can affect bone healing, promote accelerated osteogenesis, and increase bone-implant contact and bonding strength.Objective. In this work, the effects of dental implant surface treatment and fibronectin adsorption on the adhesion of osteoblasts were analyzed.Materials and Methods. Two titanium dental implants (Porous-acid etching and PorousNano-acid etching followed by fluoride ion modification) were characterized by high-resolution scanning electron microscopy, atomic force microscopy, and X-ray diffraction before and after the incorporation of human plasma fibronectin (FN). The objective was to investigate the biofunctionalization of these surfaces and examine their effects on the interaction with osteoblastic cells.Results. The evaluation techniques used showed that the Porous and PorousNano implants have similar microstructural characteristics. Spectrophotometry demonstrated similar levels of fibronectin adsorption on both surfaces (80%). The association indexes of osteoblastic cells in FN-treated samples were significantly higher than those in samples without FN. The radioactivity values associated with the same samples, expressed as counts per minute (cpm), suggested that FN incorporation is an important determinant of thein vitrocytocompatibility of the surfaces.Conclusion. The preparation of bioactive titanium surfaces via fluoride and FN retention proved to be a useful treatment to optimize and to accelerate the osseointegration process for dental implants.


2015 ◽  
Vol 136 ◽  
pp. 752-760 ◽  
Author(s):  
Xue-jin Wang ◽  
Hui-ying Liu ◽  
Xiang Ren ◽  
Hui-yan Sun ◽  
Li-ying Zhu ◽  
...  

2021 ◽  
Author(s):  
Melanie Ghoul ◽  
Sandra B Andersen ◽  
Helle Krogh Johansen ◽  
Lars Jelsbak ◽  
Søren Molin ◽  
...  

Pathogenic bacteria respond to antibiotic pressure with the evolution of resistance but survival can also depend on their ability to tolerate antibiotic treatment, known as persistence. While a variety of resistance mechanisms and underlying genetics are well characterised in vitro and in vivo, the evolution of persistence, and how it interacts with resistance in situ is less well understood. We assayed for persistence and resistance with three clinically relevant antibiotics: meropenem, ciprofloxacin and tobramycin, in isolates of Pseudomonas aeruginosa from chronic cystic fibrosis lung infections spanning up to forty years of evolution. We find evidence that persistence is under positive selection in the lung and that it can particularly act as an evolutionary stepping stone to resistance. However, this pattern is not universal and depends on the bacterial clone type and antibiotic used, indicating an important role for antibiotic mode of action.


2011 ◽  
Vol 295-297 ◽  
pp. 491-495
Author(s):  
Xiao Feng Pang ◽  
Yong Huang ◽  
Xian Yu Cao

The nano-hydroxyapatite/zirconia coating of double layers on surface of titanium allay materials have been prepared using electrochemical method. The features and structures of the composite coating materials are studied and analyzed by the Scanning electron microscope (SEM) and EDAX measurement. The results show that nano-HA/ZrO2 are densely and uniformly deposited on the surface of titanium allays in ionic form, a stable gradient composite coating, in which the nano-zirconium oxides (ZrO2) are homogeneously distributed between HA and titanium surfaces, are obtained. The tensile strength experiment exhibits that the adhesion or combined strength of the coating with the titanium surface is higher and about 17GPa, which manifests the nano-HA/ ZrO2 coating is successfully combined on the surface of the titanium allay materials. The biological experiments represent that this material can be used in repairing of bone and medical dental- implant of teeth.


2021 ◽  
Vol 22 (13) ◽  
pp. 6811
Author(s):  
Masako Tabuchi ◽  
Kosuke Hamajima ◽  
Miyuki Tanaka ◽  
Takeo Sekiya ◽  
Makoto Hirota ◽  
...  

It is a significant challenge for a titanium implant, which is a bio-inert material, to recruit osteogenic factors, such as osteoblasts, proteins and blood effectively when these are contained in a biomaterial. The objective of this study was to examine the effect of ultraviolet (UV)-treatment of titanium on surface wettability and the recruitment of osteogenic factors when they are contained in an atelocollagen sponge. UV treatment of a dental implant made of commercially pure titanium was performed with UV-light for 12 min immediately prior to the experiments. Superhydrophilicity on dental implant surfaces was generated with UV-treatment. The collagen sponge containing blood, osteoblasts, or albumin was directly placed on the dental implant. Untreated implants absorbed only a little blood from the collagen sponge, while the UV-treated implants absorbed blood rapidly and allowed it to spread widely, almost over the entire implant surface. Blood coverage was 3.5 times greater for the UV-treated implants (p < 0.001). Only 6% of the osteoblasts transferred from the collagen sponge to the untreated implants, whereas 16% of the osteoblasts transferred to the UV-treated implants (p < 0.001). In addition, a weight ratio between transferred albumin on the implant and measured albumin adsorbed on the implant was 17.3% in untreated implants and 38.5% in UV-treated implants (p < 0.05). These results indicated that UV treatment converts a titanium surface into a superhydrophilic and bio-active material, which could recruite osteogenic factors even when they were contained in a collagen sponge. The transfer and subsequent diffusion and adsorption efficacy of UV-treated titanium surfaces could be useful for bone formation when titanium surfaces and osteogenic factors are intervened with a biomaterial.


Sign in / Sign up

Export Citation Format

Share Document