scholarly journals TRAPPC4 regulates the intracellular trafficking of PD-L1 and antitumor immunity

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yimeng Ren ◽  
Yun Qian ◽  
Luoyan Ai ◽  
Yile Xie ◽  
Yaqi Gao ◽  
...  

AbstractTumor cells evade T cell-mediated immunosurveillance via the interaction between programmed death-1 (PD-1) ligand 1 (PD-L1) on tumor cells and PD-1 on T cells. Strategies disrupting PD-1/PD-L1 have shown clinical benefits in various cancers. However, the limited response rate prompts us to investigate the molecular regulation of PD-L1. Here, we identify trafficking protein particle complex subunit 4 (TRAPPC4), a major player in vesicular trafficking, as a crucial PD-L1 regulator. TRAPPC4 interacts with PD-L1 in recycling endosomes, acting as a scaffold between PD-L1 and RAB11, and promoting RAB11-mediated recycling of PD-L1, thus replenishing its distribution on the tumor cell surface. TRAPPC4 depletion leads to a significant reduction of PD-L1 expression in vivo and in vitro. This reduction in PD-L1 facilitates T cell-mediated cytotoxicity. Overexpression of Trappc4 sensitizes tumor cells to checkpoint therapy in murine tumor models, suggesting TRAPPC4 as a therapeutic target to enhance anti-tumor immunity.

2019 ◽  
Vol 9 (02) ◽  
Author(s):  
Zainab Saad Ghafil Al-Raheem

The focus, in the current work, was applied on evaluation of Egr2-gene-dependent effects on the expression of the programmed death-1 ligand 2 (PDCD1LG2) gene in 2 types of T-lymphocytes (MF2), one type with the Egr2 gene (23 test samples (TS)) and other type without this gene (23 control samples (CS)). CDNA labelled with different fluorescent dyes, Cy3 and Cy5 for CSs and TSs, was mixed together and hybridized to a solid chip in a microarray-based technique. The resulted (upregulated, downregulated, and no changed) genes were categorized according to their functions using Go minor software. The results identified upregulated, downregulated, and no changed genes in the TSs compared to those in the CSs. Mainly, the PDCD1LG2, programmed death-1 ligand 2 was found to be changed in its levels. This gene is needed for T-cell-based proliferation and IFNG-based production. T-cell proliferation is inhibited via the interaction with PDCD1 via blocking cell cycle continuity. The current study presents important information that could be used as a guide for future in vitro and in vivo studies involving the PDCD1LG2 gene in links to the Egr2 gene.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1383-1383 ◽  
Author(s):  
Tongyuan Xue ◽  
Marissa Del Real ◽  
Emanuela Marcucci ◽  
Candida Toribio ◽  
Sonia Maryam Setayesh ◽  
...  

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The cure rate for primary AML patients is only 35% and decreases with age. Novel and effective immunotherapies for patients with relapsed and/or refractory (r/r) AML remain an urgent unmet need. CD33 is an attractive immunotherapeutic target for myeloid malignancies given its expression on more than 85% of AML patient samples. We therefore set out to design and test CD33 chimeric antigen receptor (CD33CAR) T cells preclinically as a single agent and in combinational therapy. To assess antileukemic responses of CD33CAR T cells in vitro and in vivo, we enriched CD4/CD8 T cells from peripheral blood mononuclear cells (PBMCs) and genetically modified them to express a second-generation CD33CAR. CD33CAR T cells exhibited potent antigen dependent CD107a degranulation, IFN-γ production and killing activities against AML cells in vitro. Using a NOD-SCID-IL2Rgnull (NSG) xenograft model engrafted with MOLM-14-ffluc, a CD33 expressing AML cell line transduced with lentivirus carrying firefly luciferase (ffluc) and enhanced green fluorescent protein (eGFP), 3 million CD33CAR or mock T cells were introduced intravenously. CD33 CAR T cell-treated group displayed 98.2% leukemic regression 4 days post CAR T infusion, and 99.6% reduction on day 31. Bioluminescent imaging (BLI) and Kaplan-Meier analysis demonstrated that CD33CAR T cells significantly decreased leukemic burden and prolonged overall survival compared to mock T cells in vivo. Decitabine, a DNA hypomethylating agent (HMA), is a main therapeutic agent for treating AML. We observed HMA treatment led to increased CD33 expression on MOLM-14 cells in vitro. We hypothesized that decitabine can potentiate CD33CAR T cell-mediated AML killing by increasing CD33 expression. MOLM-14 cells were treated with either decitabine alone, CD33CAR T cells alone, or sequential treatment using various concentrations of decitabine or DMSO followed by CD33CAR or mock T cells in an E:T ratio of 1:100. We determined the target specific killing activities in each group using flow cytometric based analysis 48 and 96 hours later. The decitabine followed by CD33CAR T cells treatment reproducibly resulted in the most robust antileukemic activity with 80.6% MOLM-14 cells killed. In comparison, CD33CAR T cells or decitabine monotherapy resulted in 11.5% and 50.9% killing, respectively. In vivo testing of the combinational effects of decitabine and CD33CAR T cells are underway and will be updated at the meeting. Finally, checkpoint blockade targeting programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) has shown survival benefits, particularly in combination with HMA, for patients with r/r AML (Daver et al. 2019). We observed elevated PD-L1 expression on residual AML blasts that survived the treatment with decitabine in combination with CD33CAR T cells. Therefore, we hypothesized that blockade of PD-1/PD-L1 interaction might further improve the antileukemic effect of CD33CAR T cells against AML cells post antigen induction by decitabine. MOLM-14 cells were treated with decitabine for 2 days and CD33CAR T cells were added in an E:T ratio of 1:75. Anti-PD-1 or IgG4 antibody was added to the culture at various concentrations. The most robust CD33 specific killing was seen in the culture with anti-PD-1 antibody added. Further characterization are underway and will be presented. Taken together, our preclinical findings have demonstrated the potency of the CD33CAR T cell therapy and ways to optimize its efficacy. Our results support clinical translation of CD33CAR T cells for patients with AML. Disclosures Budde: F. Hoffmann-La Roche Ltd: Consultancy.


1987 ◽  
Vol 105 (1) ◽  
pp. 553-559 ◽  
Author(s):  
E Roos ◽  
F F Roossien

We studied the interaction of MB6A lymphoma and TAM2D2 T cell hybridoma cells with hepatocyte cultures as an in vitro model for in vivo liver invasion by these tumor cells. A monoclonal antibody against leukocyte function-associated antigen-1 (LFA-1) inhibited adhesion of the tumor cells to the surface of hepatocytes and consequently strongly reduced invasion. This effect was specific since control antibodies, directed against Thy.1 and against T200, of the same isotype, similar affinity, and comparable binding to these cells, did not inhibit adhesion. This suggests that LFA-1 is involved in the formation of liver metastases by lymphoma cells. TAM2D2 T cell hybridoma cells were agglutinated by anti-LFA-1, but not by control antibodies. Reduction of adhesion was not due to this agglutination since monovalent Fab fragments inhibited adhesion as well, inhibition was also seen under conditions where agglutination was minimal, and anti-LFA-1 similarly affected adhesion of MB6A lymphoma cells that were not agglutinated. The two cell types differed in LFA-1 surface density. TAM2D2 cells exhibited 400,000 surface LFA-1 molecules, 10 times more than MB6A cells. Nevertheless, the level of adhesion and the extent of inhibition by the anti-LFA-1 antibody were only slightly larger for the TAM2D2 cells.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3720-3720
Author(s):  
Yasuhiro Nagate ◽  
Sachiko Ezoe ◽  
Jiro Fujita ◽  
Takafumi Yokota ◽  
Michiko Ichii ◽  
...  

Abstract Background: Adult T-cell leukemia/lymphoma (ATLL) is a mature T-cell neoplasm, linked to the human T-cell lymphotropic virus, HTLV-1. Patients with ATLL are often at the risk of opportunistic infections. Some studies suggested that ATLL cells originate from HTLV-1-infected regulatory T cells (Tregs). It could be possible that this immunocompromised state is caused by the function of ATLL cells having similar phenotypes with Tregs. In this study, we examined the expression of immunosuppressive molecules associated with Tregs in ATLL cells, and analyzed their roles in the function of ATLL cells. Methods: The protocol of this study was approved by the Investigational Review Board of Osaka University Hospital. Peripheral blood mononuclear cells (PBMCs) were collected from 10 asymptomatic HTLV-1 carriers and 22 ATLL patients (1 with smoldering type, 5 with chronic type, 2 with lymphoma type, and 14 with acute type) after getting informed consent. PBMCs from 3 ATLL patients were separated into CD4+ CD7- CADM1+ATLL cells and adjacent CD4+CD7+ CADM1-normal T cells using Fluorescence-activated Cell Sorter (FACS), and cells in each fraction were subjected to total RNA sequencing experiments. Based on the results, we examined the expression patterns of CD39 and CD73 in HTLV-1 carriers or each type of ATLL patients, and also analyzed the immune functions of these molecules in ATLL tumor cells. Results: We compared whole transcriptome of ATLL cells and normal CD4+cells. Bioinformatic analyses showed that many genes associated with immunosuppressive functions were elevated or downregulated in ATLL cells. Among these genes we focused on CD39, CD73 and CD26, because they have recently been reported to be strongly associated with the functions of Tregs. CD39, expressed on normal Tregs, and extrinsic CD73 have immunosuppressive potential by catalyzing adenosine from extracellular ATP, and CD26 has opposite potential by resolving adenosine, which have a strong anti-inflammatory function and plays major role in Treg-mediated immunosuppression. We found that all of 4 ATLL cell lines (MJ, MT1, MT2, MT4) expressed CD39, but not CD73 just as human effector Tregs. Tumor cells from 12 acute ATLL patients (86%) and 2 chronic ATLL patients (40%) expressed CD39, but the expressions of CD73 were various. Also in asymptomatic carriers, we could detect CD39 and/or CD73 positive in CD7- CADM1+ abnormal fraction of CD4+cells. On the other hand, CD26, normally expressed on human CD4+Th cells other than effector Tregs, was negative in ATLL cell lines and primary ATLL cells except for cells in abnormal fraction of one asymptomatic carrier. CD39 negative cases in chronic/smoldering type tended to show slower disease progression after the blood collection. Next, the role of CD39 and/or CD73 in ATLL cells was assessed in vitro and in vivo. As expected, CD39+ ATLL cells converted significantly more extracellular ATP than CD39- ATLL cells, and mass spectrometry analysis of AMP/adenosine concentration identified the AMPase activity of CD73+ ATLL cells. Furthermore, we established CD39 knockout (KO) cells from ATL cell-line MJ using CRISPR/Cas9 system, and performed in vitro suppression assays for assessment of immunosuppressive function. Although wild type MJ suppressed the growth of normal CD4+ and CD8+ T cells, KO MJ did little. Next, we analyzed the role of CD39 in the progression of tumor cells in vivo. We transplanted mouse T-cell lymphoma cell-line EG7-OVA artificially expressing CD39 or mock into mice subcutaneously. The coinjection of immunoadjuvant poly(I:C) significantly suppressed the tumor growth of mock cells, but the tumor sizes of CD39 expressing cells were almost the same as those of mock cells without poly(I:C) injection (Figure). Conclusion: In this study, we reported that most of ATLL cells in acute type patients express CD39+ CD26- just as Tregs, and that CD39- KO of ATLL cell line cancelled its immunosuppressive effects, and forcibly expressed CD39 on tumor cells rejected the anti-tumor immunity in vivo. From these data, we clarified the pathological mechanism of immunosuppressive function in ATLL cells, and also showed that CD39 expression could be used as a prognostic clue and be a new therapeutic target of ATLL. Disclosures Ezoe: TAIHO Phamaceutical Co., Ltd.: Research Funding. Yokota:Celgene: Research Funding; Bristol-Myers Squibb: Research Funding; Pfizer Inc.: Research Funding; CHUGAI PHARMACEUTICAL CO., LTD.: Research Funding; MSD K.K.: Research Funding. Ichii:Novartis Pharma K.K.: Speakers Bureau; Kowa Pharmaceutical Co.,LTD.: Speakers Bureau; Celgene K.K.: Speakers Bureau. Shibayama:Novartis Pharma K.K.: Honoraria, Research Funding; Celgene K.K.: Honoraria, Research Funding; Takeda Pharmaceutical Co.,LTD.: Honoraria, Research Funding; Fujimoto Pharmaceutical: Honoraria, Research Funding; Jansen Pharmaceutical K.K: Honoraria; Ono Pharmaceutical Co.,LTD: Honoraria, Research Funding; Mundipharma K.K.: Honoraria, Research Funding; Bristol-Meyer Squibb K.K: Honoraria, Research Funding. Oritani:Novartis Pharma: Speakers Bureau. Kanakura:Alexion Pharmaceuticals, Inc.: Consultancy, Honoraria, Research Funding.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A587-A587
Author(s):  
Diego Alvarado ◽  
Laura Vitale ◽  
Mike Murphy ◽  
Thomas O’Neill ◽  
Edward Natoli ◽  
...  

BackgroundAxl is a member of the TAM (Tyro3/Axl/MerTK) family of receptor tyrosine kinases and a negative regulator of innate immunity. Activation of Axl through its ligand Gas6 leads to suppression of myeloid cell activity, while its activation in tumor cells drives tumor growth, metastasis, and is associated with acquired resistance to targeted therapies, radiotherapy and chemotherapy.MethodsPurified monoclonal antibodies and variants thereof were tested in human cancer lines and primary human myeloid cells for effects on Axl signaling and immune activation, respectively.ResultsWe describe a humanized IgG1 Axl-targeting monoclonal antibody (mAb), CDX-0168, that binds to the ligand-binding domain of Axl with sub-nanomolar affinity and potently inhibits Gas6 binding. In tumor cells, CDX-0168 inhibits Gas6-dependent Axl phosphorylation and signaling and elicits tumor cell killing via ADCC in vitro and in vivo. In primary human immune cells, CDX-0168 treatment induces potent release of pro-inflammatory cytokines and chemokines from dendritic cells, monocytes and macrophages through an Fc receptor-dependent mechanism and enhanced T cell activation in mixed lymphocyte reactions. Axl inhibition may further enhance antitumor activity associated with PD-(L)1 blockade. To this end, we generated a tetravalent bispecific Axl x PD-L1 antibody combining CDX-0168 with a potent anti-PD-L1 mAb (9H9) using an IgG-scFv format. The bispecific antibody elicits greater cytokine release and T cell activation in vitro than the combination of the parental antibodies, while maintaining robust Axl and PD-L1 blockade.ConclusionsAdditional studies investigating simultaneous blockade of the Axl and PD-L1 pathways with other agents may further exploit the potential for this novel anti-cancer therapeutic approach.


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 150-150
Author(s):  
Sergei Kusmartsev ◽  
Johaness Vieweg ◽  
Victor Prima

150 Background: NKG2D is a lectin-like type 2 transmembrane receptor that expressed by natural killer cells and some T cell subsets. Stimulation of NKG2D receptor with specific agonistic ligands produces activating signals through signaling adaptor protein DAP10 leading to the enhanced cytokine production, proliferation, and cytotoxicity against tumor cells. There is strong evidence that NKG2D ligands are expressed in many human tumors, including melanoma, leukemia, myeloma, glioma, and carcinomas of the prostate, breast, lung, and colon. Recent studies also demonstrated that T cells bearing chimeric antigen receptor (CAR) NKG2D linked to CD3ζ (zeta) chain produce marked in vitro and in vivo anti-tumor effects. The aim of current study was to determine whether human T cells bearing chimeric antigen receptor (CAR) NKGD2 linked to CD3ε (epsilon) chain could be activated by the NKG2D-specific stimulation and able to kill human cancer cells. Given the important role of CD3ε in activation and survival of T cells, we hypothesized that NKG2D-CDε-bearing T cells could exert strong in vitro and in vivo anti-tumor effects. Methods: NKG2D CAR was produced by linking human NKG2D to DAP10 and the cytoplasmic portion of the CD3ε chain. Original full-length human cDNA clones were obtained from NIH Mammalian Gene Collection (MGC). Functional domain analysis and oligonucleotide design in the in-Fusion system of DNA cloning (Clontech) was used to generate the retroviral expression constructs. Results: Human PBMC-derived T cells were retrovirally transduced with newly generated NKG2D-CD3ε CAR DNA construct. These NKG2D CAR-expressing human T cells responded to NKG2D-specific activation by producing IFN-γ and exhibited significant cellular cytotoxicity against human tumor cells in vitro. In vivo studies demonstrated that NKG2D-CD3ε-bearing cells are capable of inhibiting growth of DU-145 human prostate cancer in the immunodeficient mice. Conclusions: Collectively, our data indicate the feasibility of developing chimeric antigen receptor NKG2D-CD3ε for T cells and suggest that adoptive transfer of T cells bearing NKG2D-CD3ε CAR could be potentially effective for immunotherapy of cancer patients.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4070-4070
Author(s):  
Harbani Malik ◽  
Ben Buelow ◽  
Udaya Rangaswamy ◽  
Aarti Balasubramani ◽  
Andrew Boudreau ◽  
...  

Introduction The restricted expression of CD19 in the B-cell lineage makes it an attractive target for the therapeutic treatment of B-cell malignancies. Many monoclonal antibodies and antibody drug conjugates targeting CD19 have been developed, including bispecific T-cell redirecting antibodies (T-BsAbs). In addition, anti-CD19 chimeric antigen receptor T-cells (CAR-T) have been approved to treat leukemia and lymphoma. However, despite the impressive depth of responses achieved by T-cell redirecting approaches such as T-BsAbs and CAR-T cells, toxicity from over-activation of T-cells remains a substantial limitation for this type of therapy, in particular neurotoxicity. In designing TNB-486, a novel CD19 x CD3 T-BsAb, we endeavored to retain activity against CD19-positive tumor cells while limiting the cytokine secretion thought to underlie toxicity from T-cell redirecting therapies. Utilizing TeneoSeek, a next generation sequencing (NGS)-based discovery pipeline that leverages in silico analysis of heavy chain only/fixed light chain antibody (HCA/Flic, respectively) sequences to enrich for antigen specific antibodies, we made a high affinity αCD19 HCA and a library of αCD3 Flic antibodies that showed a >2 log range of EC50s for T cell activation in vitro. Of note, the library contained a low-activating αCD3 that induced minimal cytokine secretion even at concentrations that mediated saturating T-cell dependent lysis of lymphoma cells (when paired with an αCD19 HCA). We characterized the relative efficacy and potential therapeutic window of this unique molecule, TNB-486, in vitro and in vivo and compared it to two strongly activating bispecific CD19 x CD3 antibodies similar to those currently available and in clinical development. Methods Affinity measurements of the αCD19 moiety were made via Biacore (protein) and flow cytometry (cell surface). Stability measurements were made by subjecting the molecule to thermal stress and the %aggregation was measured by Size Exclusion Chromatography. T-cell activation was measured via flow cytometry (CD69 and CD25 expression) and cytokine was measured by ELISA (IL-2, IL-6, IL-10, INF-ɣ, and TNFα) in vitro. Lysis of B-cell tumor cell lines (Raji, RI-1, and Nalm6) was measured via flow cytometry in vitro. In vivo, NOG mice were engrafted subcutaneously with NALM-6 or SUDHL-10 cells and intravenously with human peripheral blood mononuclear cells (huPBMC), and the mice treated with multiple doses of TNB-486 or negative or positive control antibody. Tumor burden was evaluated via caliper measurement. Pharmacodynamic/Pharmacokinetic (PK/PD) studies were performed in NOG mice. A pharmacokinetic (PK) study was performed in BALB/c mice, and a tolerability and PK study are ongoing in cynomolgus monkeys. Results TNB-486 bound to cell surface CD19 with single digit nanomolar affinity (~3nM). EC50s for cytotoxicity were in the single-digit nanomolar range for TNB-486, and sub-nanomolar for the strongly activating controls; TNB-486 maximum achievable lysis was identical to the positive controls. TNB-486 induced significantly less cytokine release for all cytokines tested compared to the positive controls even at doses saturating for tumor lysis. No off-target activation was observed in the absence of CD19 expressing target cells. In vivo, TNB-486 eradicated all CD19-positive tumors tested (NALM-6 and SUDHL10) at doses as little as 1µg administered every four days after tumors had reached ~200mm3. TNB-486 showed a PK profile consistent with other IgG molecules in mice (T1/2 ~6 days in mice). Conclusions TNB-486 induced comparable lysis of CD19-positive tumor cells as the strongly activating control bispecific antibodies while inducing significantly reduced cytokine secretion, even at doses saturating for tumor lysis in vitro. In vivo TNB-486 eradicated all tested CD19 positive tumor cell lines in established tumor models. No off-target binding was observed. In summary, TNB-486 shows promise as a lymphoma therapeutic differentiated from T-cell targeted therapies currently in the clinic and in clinical trials. Disclosures Malik: Teneobio, Inc.: Employment, Equity Ownership. Buelow:Teneobio, Inc.: Employment, Equity Ownership. Rangaswamy:Teneobio, Inc.: Employment, Equity Ownership. Balasubramani:Teneobio, Inc.: Employment, Equity Ownership. Boudreau:Teneobio, Inc.: Employment, Equity Ownership. Dang:Teneobio, Inc.: Employment, Equity Ownership. Davison:Teneobio, Inc.: Employment, Equity Ownership. Force Aldred:Teneobio, Inc.: Equity Ownership. Iyer:Teneobio, Inc.: Employment, Equity Ownership. Jorgensen:Teneobio, Inc.: Employment, Equity Ownership. Pham:Teneobio, Inc.: Employment, Equity Ownership. Prabhakar:Teneobio, Inc.: Employment, Equity Ownership. Schellenberger:Teneobio, Inc.: Employment, Equity Ownership. Ugamraj:Teneobio, Inc.: Employment, Equity Ownership. Trinklein:Teneobio, Inc.: Employment, Equity Ownership. Van Schooten:Teneobio, Inc.: Employment, Equity Ownership.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4405-4405
Author(s):  
Eugene Zhukovsky ◽  
Uwe Reusch ◽  
Carmen Burkhardt ◽  
Stefan Knackmuss ◽  
Ivica Fucek ◽  
...  

Abstract To harness the potent tumor-killing capacity of T cells for the treatment of CD19+ malignancies, we developed a humanized bispecific tetravalent antibody, with two binding sites for CD3 and CD19, the CD19/CD3 RECRUIT-TandAb AFM11. CD19 is expressed from early B cell development through differentiation into plasma cells, and is an attractive alternative to CD20 as a target for the development of therapeutic antibodies to treat B cell malignancies such as Non Hodgkin Lymphoma. Since native antibodies cannot recruit T cells, we engineered a bispecific anti-CD19/anti-CD3 TandAb. The tumor-specific CD19 antigen module targets the TandAb to cancer cells, while simultaneously, the CD3 effector module recruits and activates T cells, leading to cancer cell lysis. The advantages of the TandAb technology, relative to other bi-functional fragment antibody scaffolds, include: improved pharmacokinetics (PK) enabling intravenous dosing, more drug-like properties, and avidity-enhanced efficacy for the targeting and killing of tumor cells. We evaluated in vitro efficacy and safety using CD19+ cell lines, and in vivo efficacy in a murine NOD/scid xenograft model reconstituted with human PBMC. Further, we used standard preclinical IND enabling assays to evaluate tissue cross reactivity, PK, and toxicological profile (local tolerance, hematocompatibility, effects on hematopoesis, etc). In vitro assays demonstrated the higher potency and efficacy of target cell lysis by AFM11 relative to a bispecific tandem scFv (that is currently in clinical evaluation). CD8+ T cells dominate early AFM11-mediated cytotoxicity (4 hrs) while after 24 hrs both CD4+ and CD8+ T cells equally contribute to tumor lysis with EC50 between 0.5 – 5 pM; cytotoxicity was independent of CD19 cell-surface density. AFM11 exhibited similar cytotoxicity over effector:target ratios ranging from 5:1 to 1:5, and facilitated serial T cell-killing of its targets. The advantage of AFM11 over the bispecific tandem scFv was most pronounced at lower effector:target ratios. AFM11 activated T cells only in the presence of CD19+ cells. In PBMC cultures, AFM11 induced CD69 and CD25 expression, T cell proliferation, and production of IFN-γ, TNF-α, IL-2, IL-6, and IL-10. Depletion of CD19+ cells from PBMC abrogated these effects, demonstrating that the T cell activation is strictly CD19+ target-dependent. Thus, AFM11 should not elicit the devastating cytokine release observed when full-length antibodies bind CD3. Up to one week co-incubation with AFM11 did not inhibit T cell cytotoxicity, suggesting that the TandAb does not induce anergy. In vivo, AFM11 induced dose-dependent growth inhibition of Raji tumors; a single 0.5 mg/kg dose exhibited efficacy similar to 5 daily injections. In the tissue cross reactivity study, only tissues containing CD19+ and CD3+ cells were stained by AFM11; all other tissues, including vital organs, displayed no cross reactivity. Similarly, no local intolerance was observed in rabbits, and no effect on myeloid and erythroid progenitors was observed in a colony-forming assay. Strong accumulation of 125I-labeled AFM11 was observed in the tumors of mice engrafted with CD19+ cancer cells, and no unspecific organ accumulation was observed. Finally, evaluated on the basis of Cmax and the area under the curve (AUC), AFM11 exhibited dose linearity (20 – 500 mg AFM11 dose range) upon single i.v. bolus administration in mice; half-life (T1/2) ranged from 18.4 to 22.9 hr. In summary, AFM11 is a highly efficacious novel drug candidate for the treatment of CD19+ malignancies with an advantageous safety profile and anticipated dosing regimen. Disclosures: Zhukovsky: Affimed Therapeutics AG: Employment, Equity Ownership. Reusch:Affimed Therapeutics AG: Employment. Burkhardt:Affimed Therapeutics AG: Employment. Knackmuss:Affimed Therapeutics AG: Employment. Fucek:Affimed Therapeutics AG: Employment. Eser:Affimed Therapeutics AG: Employment. McAleese:Affimed Therapeutics AG: Employment. Ellwanger:Affimed Therapeutics AG: Employment. Little:Affimed Therapeutics AG: Consultancy, Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2433-2433
Author(s):  
Mireya Paulina Velasquez ◽  
Kota Iwahori ◽  
David L Torres ◽  
Sunitha Kakarla ◽  
Caroline Arber ◽  
...  

Abstract Background: Immunotherapy with anti-CD19/anti-CD3 bispecific engager molecules has shown promise in clinical studies for CD19+ malignancies. However engager molecules have short half-lives and do not accumulate at tumor sites. In addition, co-delivery of other immunostimulatory molecules to enhance antitumor effects is difficult to achieve. We have recently shown that T cells can be genetically modified to secrete bispecific engager molecules (ENG-T cells). ENG-T cells are activated by tumor cells in an antigen-dependent manner, redirect bystander T cells to tumor cells, and have antitumor activity in preclinical models. We now wanted to explore if additional genetic modifications of ENG-T cells can enhance their effector function in vitro and in vivo. Since bispecific engager molecules do not provide co-stimulation, we focused on the provision of co-stimulatory signals by coexpressing CD80 and CD137L on the cell surface of ENG-T cells. Thus, the aim of the study was to compare the effector function of CD19-specific T-cell engagers (CD19-ENG T cells) and CD19-ENG T cells co-expressing CD80 and 41BBL (CD19-ENG/Costim T cells). Methods: CD19-ENG T cells were generated by transducing T cells with a retroviral vector encoding a CD19-specific T-cell engager and mOrange separated by an IRES (SFG.CD19-ENG-I-mO), and CD19-ENG/Costim T cells were generated by double transducing T cells with SFG.CD19-ENG-I-mO and a 2nd retroviral vector encoding 41BBL and CD80 separated by an IRES. The effector function of ENG T-cells was evaluated in vitro and in a leukemia xenograft model. Results: After single or double transduction 60-80% of T cells were positive for mOrange, and ~80% of CD19-ENG/Costim T cells were positive for CD80 and 30-40% positive for 41BBL. In coculture assays CD19-ENG and CD19-ENG/Costim T cells recognized CD19+ lymphoma (Daudi, Raji) and acute leukemia (BV173) cells as judged by IFN-g secretion in contrast to negative controls. While CD19+ target cells that express CD80 and CD86 (Daudi and Raji) induced robust IL2 production of CD19-ENG and CD19-ENG/Costim T cells, CD19-ENG/Costim T cells produced significantly higher levels of IL2 in comparison to CD19-ENG T cells after stimulation with CD19+/CD80-/CD86- negative target cells (BV173). Cytokine production was antigen dependent since ENG and ENG/Costim T cells specific for an irrelevant antigen (EphA2) did not produce cytokines. Specificity was confirmed in cytotoxicity assays. In transwell assays containing inserts preventing T-cell migration, only ENG T cells redirected bystander T cells in the bottom well to CD19+ tumor cells. To assess in vivo anti-tumor activity of CD19-ENG T cells and CD19-ENG/Costim T cells we used the BV173/NSG mouse xenograft model in which BV173 cells are genetically modified with firefly luciferase (ffLuc-BV173) to allow for serial bioluminescence imaging. While therapy with CD19-ENG T cells on day 7 post ffLuc-BV173 injection resulted in the cure of all mice, when therapy was delayed to day 14, only 1/10 mice was alive on day 80. In contrast therapy of mice on day 14 with CD19-ENG/Costim T cells resulted in long-term survival of 7/10 mice. Control T cells (EphA2-ENG T cells or EphA2-ENG/Costim T cells) had no antitumor effects. Conclusions: We have generated CD19-ENG T cells and CD19-ENG/Costim T cells with the ability to direct bystander T cells to CD19+ malignancies. Both ENG T-cell populations had potent antitumor activity in a preclinical ALL model, and provision of costimulation further enhanced antitumor effects. Genetically modifying T cells to express engager molecules and additional molecules to enhance their effector function may present a promising alternative to current CD19-targeted immunotherapies. Disclosures Velasquez: Celgene, Bluebird bio: Other. Iwahori:Celgene, Bluebird bio: Other. Kakarla:Celgene, Bluebird bio: Other. Song:Celgene, Bluebird bio: Other. Gottschalk:Celgene, Bluebird bio: Other.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-22
Author(s):  
Jie Zhang ◽  
Zhenhao Zhou

CD20 targeted therapy by means of anti-CD20 mAb is currently the most important regimen for treating B cells malignancies. However, 1-2% of B-cell lymphoma patients test negative for CD20. Besides, it has been reported in several studies that CD20 expression was down-regulated in over 20% of CD20-positive DLBCL patients that had relapsed/progressed after R-CHOP regimen. The limited prognosis for these patients poses a substantial unmet medical need. A new class of "1:2" format CD3 x CD20 bispecific antibodies emerged aiming for increased tumor antigen avidity and enhanced tumor cell killing, however, its advantages over conventional "1:1" format CD3 x CD20 antibodies have yet to be revealed in clinical trials. CMG1A46 is a 151 KD IgG-like "1:(1+1)" tri-specific antibody constructed on Chimagen's TRIAD platform. It simultaneously targets CD3 on T cell and two different biomarkers - CD20 and CD19 (abundancy of which proven to be intact post CD20-targeted treatment) - on tumor cells, recruiting T cells to kill tumor cells expressing CD19 and/or CD20. CMG1A46 is designed to target not only conventional CD19+CD20+ DLBCL, but also CD20-CD19+ DLBCL and DLBCL with trace to low expression of CD20 owing to its high avidity for tumor cells from 2 binders for CD19 and CD20 respectively. In vitro, CMG1A46 was shown to mediate tumor cell lysis by human PBMCs in a dose-dependent manner with EC50 around 0.3 pM. CMG1A46 was shown to have superior potency and safety (based on target-independent T cell activation) when compared to CD3 x CD20 bispecific antibodies with the conventional "1:1" IgG-based format. The antibody was able to induce potent tumor lysis in cells expressing both CD19 and CD20, and in cells expressing CD19 or CD20 alone. In vivo, 1A46 displayed potent tumor-suppressing activity in human PBMC-engrafted NOD mouse models and induced fast regression of large (CD19+CD20+) Jeko-1 lymphoma and (CD19+CD20-) A20-hCD19 tumors of ~100mm3. Remarkably, CMG1A46 can be administrated at the dosage 6 times as high as conventional CD3 x CD20 bispecific antibodies (3mg/kg for CMG1A46, 0.5mg/kg for conventional) and conferred even higher anti-tumor potency without any noticeable increase in toxicity (as evidenced by body weight of the animals and cytokine levels/T cell counts in serum post last administration). Pharmacokinetic studies in cyno monkeys show that when administrated at 1mpk CMG1A46 has a half-life that is over 70 hours in serum. After initial induction doses, weekly administration is able to maintain high circulating levels of the molecule. Dosages up to 10mpk do not lead to significant adverse effects. CMG1A46 treatment resulted in fast and complete elimination of B cells in peripheral blood within 24 hours after the first administration. Peripheral B cell elimination sustained for at least 28 days after last administration at 1mpk. B cell depletion was paralleled by transient decrease of T-cell counts in the peripheral blood and by the peak of cytokine release 4-8 hours after the first administration, followed by rapid recovery and return to baseline levels at 24 hours post treatment. Accordingly, CD3 receptor occupancy (RO) transiently increased during the induction phase and fell back to and sustained at a low level of around 20-30%. These studies show that CMG1A46 is a novel CD19/CD20-targeting T cell-engaging tri-specific antibody with very promising anti-tumor activity. In both in vitro and in vivo experiments, CMG1A46 demonstrated superior potency and safety compared to other CD3 x CD20 bispecific antibodies with the conventional "1:1" IgG format. Preliminary study in cyno monkeys suggested IgG-like half-life in serum and manageable toxicity. Taken together, the preclinical data strongly support for clinical testing of CMG1A46 in patients with CD20+ cancers. Phase 1 trial of the molecule is scheduled to start by April 2021. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document