scholarly journals Radiative forcing by light-absorbing aerosols of pyrogenetic iron oxides

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Akinori Ito ◽  
Guangxing Lin ◽  
Joyce E. Penner
2021 ◽  
Vol 13 (6) ◽  
pp. 1114
Author(s):  
Jianyu Lin ◽  
Yu Zheng ◽  
Xinyong Shen ◽  
Lizhu Xing ◽  
Huizheng Che

The particle linear depolarization ratio (PLDR) and single scatter albedo (SSA) in 1020 nm from the Aerosol Robotic Network (AERONET) level 2.0 dataset was utilized among 52 stations to identify dust and dust dominated aerosols (DD), pollution dominated mixture (PDM), strongly absorbing aerosols (SA) and weakly absorbing aerosols (WA), investigate their spatial and temporal distribution, net radiative forcing and radiative forcing efficiency in global range, and further compare with VIIRS Deep Blue Production. The conclusion about net radiative forcing suggests that the high values of radiative forcing from dust and dust dominated aerosols, pollution dominated mixture both mainly come from western Africa. Strongly absorbing aerosols in South Africa and India contribute greatly to the net radiative forcing and the regions with relative high values of weakly absorbing aerosols are mainly located at East Asia and India. Lastly, the observation of VIIRS Deep Blue satellite monthly averaged products depicts the characteristics about spatial distribution of four kinds of aerosol well, the result from ground-based observation presents great significant to validate the measurements from remote sensing technology.


2011 ◽  
Vol 11 (3) ◽  
pp. 1143-1154 ◽  
Author(s):  
A. Devasthale ◽  
M. A. Thomas

Abstract. Simulating the radiative impacts of aerosols located above liquid water clouds presents a significant challenge. In particular, absorbing aerosols, such as smoke, may have significant impact in such situations and even change the sign of net radiative forcing. It is not possible to reliably obtain information on such overlap events from existing passive satellite sensors. However, the CALIOP instrument onboard NASA's CALIPSO satellite allows us to examine these events with unprecedented accuracy. Using four years of collocated CALIPSO 5 km Aerosol and Cloud Layer Version 3 Products (June 2006–May 2010), we quantify, for the first time, the characteristics of overlapping aerosol and water cloud layers globally. We investigate seasonal variability in these characteristics over six latitude bands to understand the hemispheric differences when all aerosol types are included in the analysis (the AAO case). We also investigate frequency of smoke aerosol-cloud overlap (the SAO case). Globally, the frequency is highest during the JJA months in the AAO case, while for the SAO case, it is highest in the SON months. The seasonal mean overlap frequency can regionally exceed 20% in the AAO case and 10% in the SAO case. In about 5–10% cases the vertical distance between aerosol and cloud layers is less than 100 m, while about in 45–60% cases it less than a kilometer in the annual means for different latitudinal bands. In about 70–80% cases, aerosol layers are less than a kilometer thick, while in about 18–22% cases they are 1–2 km thick. The frequency of aerosol layers 2–3 km thick is about 4–5% in the tropical belts during overlap events. Over the regions where high aerosol loadings are present, the overlap frequency can be up to 50% higher when quality criteria on aerosol/cloud feature detection are relaxed. Over the polar regions, more than 50% of the overlapping aerosol layers have optical thickness less than 0.02, but the contribution from the relatively optically thicker aerosol layers increases towards the equatorial regions in both hemispheres. The results suggest that the frequency of occurrence of overlap events is far from being negligible globally.


2014 ◽  
Vol 14 (3) ◽  
pp. 1159-1165 ◽  
Author(s):  
V. S. Manoharan ◽  
R. Kotamarthi ◽  
Y. Feng ◽  
M. P. Cadeddu

Abstract. Each atmospheric aerosol type has distinctive light-absorption characteristics related to its physical/chemical properties. Climate models treat black carbon as the main light-absorbing component of carbonaceous atmospheric aerosols, while absorption by some organic aerosols is also considered, particularly at ultraviolet wavelengths. Most absorbing aerosols are assumed to be < 1 μm in diameter (sub-micron). Here we present results from a recent field study in India, primarily during the post-monsoon season (October–November), suggesting the presence of absorbing aerosols sized 1–10 μm. Absorption due to super-micron-sized particles was nearly 30% greater than that due to smaller particles. Periods of increased absorption by larger particles ranged from a week to a month. Radiative forcing calculations under clear-sky conditions show that super-micron particles account for nearly 44% of the total aerosol forcing. The origin of the large aerosols is unknown, but meteorological conditions indicate that they are of local origin. Such economic and habitation conditions exist throughout much of the developing world. Hence, large absorbing particles could be an important component of the regional-scale atmospheric energy balance.


2018 ◽  
Author(s):  
Kruthika Eswaran ◽  
Sreedharan Krishnakumari Satheesh ◽  
Jayaraman Srinivasan

Abstract. Single scattering albedo (SSA) represents a unique identification of aerosol type and aerosol radiative forcing. However, SSA retrievals are highly uncertain due cloud contamination and aerosol composition. Recent improvement in the SSA retrieval algorithm has combined the superior cloud masking technique of Moderate Resolution Imaging Spectroradiometer (MODIS) and the better sensitivity of Ozone Monitoring Instrument (OMI) to aerosol absorption. The combined OMI-MODIS algorithm has been validated over a small spatial and temporal scale only. The present study validates the algorithm over global oceans for the period 2008–2012. The geographical heterogeneity in the aerosol type and concentration over the Atlantic Ocean, the Arabian Sea and the Bay of Bengal was useful to delineate the effect of aerosol type on the retrieval algorithm. We also noted that OMI overestimates SSA when absorbing aerosols were present closer to the surface. We attribute this overestimation to data discontinuity in the aerosol height climatology derived from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. OMI uses pre-defined aerosol heights over regions where CALIPSO climatology is not present leading to overestimation of SSA. The importance of aerosol height was also studied using the Santa Barbara DISORT radiative transfer (SBDART) model. The results from the joint retrieval were validated with ground-based measurements and it was seen that OMI-MODIS SSA retrievals were better constrained than OMI only retrieval.


2011 ◽  
Vol 29 (5) ◽  
pp. 789-804 ◽  
Author(s):  
A. K. Srivastava ◽  
S. Tiwari ◽  
P. C. S. Devara ◽  
D. S. Bisht ◽  
Manoj K. Srivastava ◽  
...  

Abstract. Sun/sky radiometer observations over the Indo-Gangetic Basin (IGB) region during pre-monsoon (from April–June 2009) have been processed to analyze various aerosol characteristics in the central and eastern IGB region, represented by Kanpur and Gandhi College, respectively, and their impacts on climate in terms of radiative forcing. Monthly mean aerosol optical depth (AOD at 500 nm) and corresponding Angstrom Exponent (AE at 440–870 nm, given within the brackets) was observed to be about 0.50 (0.49) and 0.51 (0.65) in April, 0.65 (0.74) and 0.67 (0.91) in May and 0.69 (0.45) and 0.77 (0.71) in June at Kanpur and Gandhi College, respectively. Results show a positive gradient in AOD and AE from central to eastern IGB region with the advancement of the pre-monsoon, which may be caused due to diverse geographical location of the stations having different meteorological conditions and emission sources. Relatively lower SSA was observed at the eastern IGB (0.89) than the central IGB (0.92) region during the period, which suggests relative dominance of absorbing aerosols at the eastern IGB as compared to central IGB region. The absorbing aerosol optical properties over the station suggest that the atmospheric absorption over central IGB region is mainly due to dominance of coarse-mode dust particles; however, absorption over eastern IGB region is mainly due to dominance of fine-particle pollution. The derived properties from sun/sky radiometer during pre-monsoon period are used in a radiative-transfer model to estimate aerosol radiative forcing at the top-of-the atmosphere (TOA) and at the surface over the IGB region. Relatively large TOA and surface cooling was observed at the eastern IGB as compared to the central IGB region. This translates into large heating of the atmosphere ranging from 0.45 to 0.55 K day−1 at Kanpur and from 0.45 to 0.59 K day−1 at Gandhi College.


2012 ◽  
Vol 12 (11) ◽  
pp. 5129-5145 ◽  
Author(s):  
O. E. García ◽  
J. P. Díaz ◽  
F. J. Expósito ◽  
A. M. Díaz ◽  
O. Dubovik ◽  
...  

Abstract. The shortwave radiative forcing (ΔF) and the radiative forcing efficiency (ΔFeff) of natural and anthropogenic aerosols have been analyzed using estimates of radiation both at the Top (TOA) and at the Bottom Of Atmosphere (BOA) modeled based on AERONET aerosol retrievals. Six main types of atmospheric aerosols have been compared (desert mineral dust, biomass burning, urban-industrial, continental background, oceanic and free troposphere) in similar observational conditions (i.e., for solar zenith angles between 55° and 65°) in order to compare the nearly same solar geometry. The instantaneous ΔF averages obtained vary from −122 ± 37 Wm−2 (aerosol optical depth, AOD, at 0.55 μm, 0.85 ± 0.45) at the BOA for the mixture of desert mineral dust and biomass burning aerosols in West Africa and −42 ± 22 Wm−2 (AOD = 0.9 ± 0.5) at the TOA for the pure mineral dust also in this region up to −6 ± 3 Wm−2 and −4 ± 2 Wm−2 (AOD = 0.03 ± 0.02) at the BOA and the TOA, respectively, for free troposphere conditions. This last result may be taken as reference on a global scale. Furthermore, we observe that the more absorbing aerosols are overall more efficient at the BOA in contrast to at the TOA, where they backscatter less solar energy into the space. The analysis of the radiative balance at the TOA shows that, together with the amount of aerosols and their absorptive capacity, it is essential to consider the surface albedo of the region on which they are. Thus, we document that in regions with high surface reflectivity (deserts and snow conditions) atmospheric aerosols lead to a warming of the Earth-atmosphere system.


2015 ◽  
Vol 15 (10) ◽  
pp. 5827-5833 ◽  
Author(s):  
Y. Xu ◽  
S.-P. Xie

Abstract. Radiative forcing by reflecting (e.g., sulfate, SO4) and absorbing (e.g., black carbon, BC) aerosols is distinct: the former cools the planet by reducing solar radiation at the top of the atmosphere and the surface, without largely affecting the atmospheric column, while the latter heats the atmosphere directly. Despite the fundamental difference in forcing, here we show that the structure of the tropospheric response is remarkably similar between the two types of aerosols, featuring a deep vertical structure of temperature change (of opposite sign) at the Northern Hemisphere (NH) mid-latitudes. The deep temperature structure is anchored by the slow response of the ocean, as a large meridional sea surface temperature (SST) gradient drives an anomalous inter-hemispheric Hadley circulation in the tropics and induces atmospheric eddy adjustments at the NH mid-latitudes. The tropospheric warming in response to projected future decline in reflecting aerosols poses additional threats to the stability of mountain glaciers in the NH. Additionally, robust tropospheric response is unique to aerosol forcing and absent in the CO2 response, which can be exploited for climate change attribution.


2011 ◽  
Vol 11 (24) ◽  
pp. 12841-12863 ◽  
Author(s):  
R. Gautam ◽  
N. C. Hsu ◽  
S. C. Tsay ◽  
K. M. Lau ◽  
B. Holben ◽  
...  

Abstract. We examine the distribution of aerosols and associated optical/radiative properties in the Gangetic-Himalayan region from simultaneous radiometric measurements over the Indo-Gangetic Plains (IGP) and the foothill/southern slopes of the Himalayas during the 2009 pre-monsoon season. Enhanced dust transport extending from the Southwest Asian arid regions into the IGP, results in seasonal mean (April–June) aerosol optical depths of over 0.6 – highest over Southern Asia. The influence of dust loading is greater over the Western IGP as suggested by pronounced coarse mode peak in aerosol size distribution and spectral single scattering albedo (SSA). Transported dust in the IGP, driven by prevailing westerly airmass, is found to be more absorbing (SSA550 nm<0.9) than the near-desert region in Northwestern (NW) India suggesting mixing with carbonaceous aerosols in the IGP. On the contrary, significantly reduced dust transport is observed over eastern IGP and foothill/elevated Himalayan slopes in Nepal where strongly absorbing haze is prevalent, as indicated by lower SSA (0.85–0.9 at 440–1020 nm), suggesting presence of more absorbing aerosols compared to IGP. Additionally, our observations show a distinct diurnal pattern of aerosols with characteristic large afternoon peak, from foothill to elevated mountain locations, associated with increased upslope transport of pollutants – that likely represent large-scale lifting of absorbing aerosols along the elevated slopes during pre-monsoon season. In terms of radiative impact of aerosols, over the source region of NW India, diurnal mean reduction in solar radiation fluxes was estimated to be 19–23 Wm−2 at surface (12–15% of the surface solar insolation). Furthermore, based on limited observations of aerosol optical properties during the pre-monsoon period and comparison of our radiative forcing estimates with published literature, there exists a general spatial heterogeneity in the regional aerosol forcing, associated with the absorbing aerosol distribution over northern India, with both diurnal mean surface forcing and forcing efficiency over the IGP exceeding that over Northwestern India. Finally, the role of the seasonal progressive buildup of aerosol loading and water vapor is investigated in the observed net aerosol radiative effect over Northwestern India. The radiative impact of water vapor is found to amplify the net regional aerosol radiative forcing suggesting that the two exert forcing in tandem leading to enhanced surface cooling. It is suggested that water vapor contribution should be taken into account while assessing aerosol forcing impact for this region and other seasonally similar environments.


2013 ◽  
Vol 70 (7) ◽  
pp. 2073-2087 ◽  
Author(s):  
Anupam Hazra ◽  
B. N. Goswami ◽  
Jen-Ping Chen

Abstract Extended-range prediction of monsoon intraseasonal oscillations (MISOs), crucial for agriculture and water management, is limited by their event-to-event variability. Here, the authors propose a hypothesis supported by a number of model simulations involving detailed cloud microphysical processes indicating that aerosols contribute significantly to the transitions from “break” to “active” phases of MISO. The role of aerosol indirect effect in the process of invigoration of precipitation is demonstrated with a high-resolution regional model for Indian summer monsoon breaks that are followed by an active condition (BFA) and contrasted with breaks that are not followed by an active condition (BNFA). The BFA are characterized by higher concentrations of absorbing aerosols that lead to a stronger north–south low-level temperature gradient and strong moisture convergence. Forced uplift beyond the freezing level initiates the cold-rain process involving mixed-phase microphysics and latent heat release at higher levels, thereby invigorating convection, enhancing precipitation, and resulting in an active condition. While more aerosols tend to reduce the cloud drop size and delay the warm rain, it is overcome by the higher moisture convergence during BFA and invigoration by cold-rain processes. The net production of rainfall is sensitive to cloud structure as it depends on the relative strength of the warm- and cold-rain initiation processes. The results indicate the importance of aerosols on transitions of MISO and a pathway by which they influence the transitions involving complex interactions between direct radiative forcing, large-scale dynamics, and cloud microphysics. Broader implications of these results in event-to-event variability of MISO and its predictability are also highlighted.


2020 ◽  
Author(s):  
Paolo Tuccella ◽  
Giovanni Pitari ◽  
Valentina Colaiuda ◽  
Gabriele Curci

Abstract. Black carbon (BC), brown carbon (BrC) and soil dust are the most radiation absorbing aerosols (RAA). When RAA are deposited on the snowpack, they lower the snow albedo, increasing the absorption of the solar radiation. The climatic impact associated to snow darkening induced by RAA is highly uncertain. In this work, a 5-years simulation with GEOS-Chem global chemistry and transport model was performed, in order to calculate the present-day radiative forcing (RF) of RAA in snow. RF was estimated taking simultaneously into account the presence of BC, BrC, and mineral soil dust in snow. Modelled BC and black carbon equivalent (BCE) mixing ratios in snow and the fraction of light absorption due to non-BC compounds (fnon-BC) were compared with worldwide observations. We showed as BC, BCE and fnon-BC, obtained from deposition and precipitation fluxes, reproduce the regional variability and order of magnitude of the observations. Global mean all sky total RAA, BC, BrC and dust snow RF are 0.068, 0.033, 0.0066, and 0.012 W/m2, respectively. At global scale, non-BC compounds account for 40 % of RAA snow RF, while anthropogenic RAAs contribute to the forcing for 56 %. With regard to non-BC compounds, the largest impact of BrC has been found during summer in the Arctic (+0.13 W/m2). In the middle latitudes of Asia, dust forcing in spring accounts for the 50 % (+0.24 W/m2) of the total RAAs RF. Uncertainties in absorbing optical properties, RAA mixing ratio in snow, snow grain dimension, and snow cover fraction result in an overall uncertainty of −50% / +61 %, −57 % / +183 %, −63 % / +112 %, and −49 % / +77 % in BC, BrC, dust and total RAAs snow RF, respectively.


Sign in / Sign up

Export Citation Format

Share Document