scholarly journals Molecular mechanism of the anti-inflammatory effects of Sophorae Flavescentis Aiton identified by network pharmacology

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naiqiang Zhu ◽  
Jingyi Hou

AbstractInflammation, a protective response against infection and injury, involves a variety of biological processes. Sophorae Flavescentis (Kushen) is a promising Traditional Chinese Medicine (TCM) for treating inflammation, but the pharmacological mechanism of Kushen’s anti-inflammatory effect has not been fully elucidated. The bioactive compounds, predicted targets, and inflammation-related targets of Kushen were obtained from open source databases. The “Component-Target” network and protein–protein interaction (PPI) network were constructed, and hub genes were screened out by topological analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on genes in the PPI network. Furthermore, nitric oxide (NO) production analysis, RT-PCR, and western blot were performed to detect the mRNA and protein expression of hub genes in LPS-induced RAW264.7 cells. An immunofluorescence assay found that NF-κB p65 is translocated. A total of 24 bioactive compounds, 465 predicted targets, and 433 inflammation-related targets were identified and used to construct “Component-Targets” and PPI networks. Then, the five hub genes with the highest values-IL-6, IL-1β, VEGFA, TNF-α, and PTGS2 (COX-2)- were screened out. Enrichment analysis results suggested mainly involved in the NF-κB signaling pathway. Moreover, experiments were performed to verify the predicted results. Kushen may mediate inflammation mainly through the IL-6, IL-1β, VEGFA, TNF-α, and PTGS2 (COX-2), and the NF-κB signaling pathways. This finding will provide clinical guidance for further research on the use of Kushen to treat inflammation.

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 586
Author(s):  
Hyun Ji Eo ◽  
Jun Hyuk Jang ◽  
Gwang Hun Park

Berchemia floribunda (Wall.) Brongn. (BF), which belongs to Rhamnaceae, is a special plant of Anmyeon Island in Korea. BF has been reported to have antioxidant and whitening effects. However, the anti-inflammatory activity of BR has not been elucidated. In this study, we evaluated the anti-inflammatory effect of leaves (BR-L), branches (BR-B) and fruit (BR-F) extracted with 70% ethanol of BR and elucidated the potential signaling pathway in LPS-induced RAW264.7 cells. BR-L showed a strong anti-inflammatory activity through the inhibition of NO production. BR-L significantly suppressed the production of the pro-inflammatory mediators such as iNOS, COX-2, IL-1β, IL-6 and TNF-α in LPS-stimulated RAW264.7 cells. BR-L suppressed the degradation and phosphorylation of IκB-α, which contributed to the inhibition of p65 nuclear accumulation and NF-κB activation. BR-L obstructed the phosphorylation of MAPKs (ERK1/2, p38 and JNK) in LPS-stimulated RAW264.7 cells. Consequently, these results suggest that BR-L may have great potential for the development of anti-inflammatory drugs to treat acute and chronic inflammatory disorders.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chih-Hsuan Hsia ◽  
Thanasekaran Jayakumar ◽  
Wan-Jung Lu ◽  
Joen-Rong Sheu ◽  
Chih-Wei Hsia ◽  
...  

Objective. Oxidative stress-mediated inflammatory events involve in the progress of several diseases such as asthma, cancers, and multiple sclerosis. Auraptene (AU), a natural prenyloxycoumarin, possesses numerous pharmacological activities. Here, the anti-inflammatory effects of AU were investigated in lipoteichoic acid- (LTA-) induced macrophage cells (RAW 264.7). Methods. The expression of cyclooxygenase (COX-2), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and inducible nitric oxide synthase (iNOS) and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, c-Jun N-terminal kinase (JNK), heme oxygenase (HO-1), p65, and IκBα were all identified by western blotting assay. The level of nitric oxide (NO) was measured by spectrometer analysis. The nuclear translocation of p65 nuclear factor kappa B (NF-κB) was assessed by the confocal microscopic staining method. Native polyacrylamide gel electrophoresis was performed to perceive the activity of antioxidant enzyme catalase (CAT). Results. AU expressively reduced NO production and COX-2, TNF-α, IL-1 β, and iNOS expression in LTA-stimulated cells. AU at higher concentration (10 µM) inhibited ERK and JNK, but not p38 phosphorylation induced by LTA. Moreover, AU blocked IκB and p65 phosphorylation, and p65 nuclear translocation. However, AU pretreatment was not effective on antioxidant HO-1 expression, CAT activity, and reduced glutathione (GSH, a nonenzymatic antioxidant), in LTA-induced RAW 264.7 cells. Conclusion. The findings of this study advocate that AU shows anti-inflammatory effects via reducing NF-κB/MAPKs signaling pathways.


Medicines ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 55 ◽  
Author(s):  
Jun-Xian Zhou ◽  
Michael Wink

Background: We investigated the effect of root extracts from the traditional Chinese medicine (TCM) plants Glycyrrhiza glabra L., Paeonia lactiflora Pall., and the leaf extract of Eriobotrya japonica (Thunb.) Lindl., and their six major secondary metabolites, glycyrrhizic acid, 18β glycyrrhetinic acid, liquiritigenin, isoliquiritigenin, paeoniflorin, and ursolic acid, on lipopolysaccharide (LPS)-induced NF-κB expression and NF-κB-regulated pro-inflammatory factors in murine macrophage RAW 264.7 cells. Methods: The cytotoxicity of the substances was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. RAW 264.7 cells were treated with LPS (1 μg/mL) or LPS plus single substances; the gene expression levels of NF-κB subunits (RelA, RelB, c-Rel, NF-κB1, and NF-κB2), and of ICAM-1, TNF-α, iNOS, and COX-2 were measured employing real-time PCR; nitric oxide (NO) production by the cells was quantified with the Griess assay; nuclear translocation of NF-κB was visualized by immunofluorescence microscopy with NF-κB (p65) staining. Results: All the substances showed moderate cytotoxicity against RAW 264.7 cells except paeoniflorin with an IC50 above 1000 μM. Glycyrrhiza glabra extract and Eriobotrya japonica extract, as well as 18β glycyrrhetinic acid and isoliquiritigenin at low concentrations, inhibited NO production in a dose-dependent manner. LPS upregulated gene expressions of NF-κB subunits and of ICAM-1, TNF-α, iNOS, and COX-2 within 8 h, which could be decreased by 18β glycyrrhetinic acid, isoliquiritigenin and ursolic acid similarly to the anti-inflammatory drug dexamethasone. NF-κB translocation from cytoplasm to nucleus was observed after LPS stimulation for 2 h and was attenuated by extracts of Glycyrrhiza glabra and Eriobotrya japonica, as well as by 18β glycyrrhetinic acid, isoliquiritigenin, and ursolic acid. Conclusions: 18β glycyrrhetinic acid, isoliquiritigenin, and ursolic acid inhibited the gene expressions of ICAM-1, TNF-α, COX-2, and iNOS, partly through inhibiting NF-κB expression and attenuating NF-κB nuclear translocation. These substances showed anti-inflammatory activity. Further studies are needed to elucidate the exact mechanisms and to assess their usefulness in therapy.


2022 ◽  
Vol 2022 ◽  
pp. 1-20
Author(s):  
Hao Lv ◽  
Jiuxiang Wang ◽  
Yujun Zhu ◽  
Ting Jiang

Background. This study used a combination of network pharmacology and experimental confirmation to clarify the mechanism of the compound kidney-invigorating granule (CKG) in treating osteoporosis (OP). Methods. The main bioactive compounds and corresponding targets of CKG were collected and screened via the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Yet another Traditional Chinese Medicine (YaTCM), and UniProt databases. Disease targets of OP were summarized in GeneCards and the Comparative Toxicogenomics Database (CTD). Targets of CKG for OP were obtained by Venn diagram. The protein-protein interaction (PPI) network was constructed by the STRING database and then screened for hub genes through Cytoscape 3.7.2 software. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were analyzed and visualized by R software. Then, CB-Dock was used for molecular docking verification. Finally, we confirmed the antiosteoporosis effect of CKG through animal and cell experiments. Results. A total of 250 putative targets were obtained from 65 bioactive compounds in CKG. Among them, 140 targets were related to OP. Topological analysis of the PPI network yielded 23 hub genes. Enrichment analysis showed the targets of CKG in treating OP might concentrate on the MAPK signaling pathway, the TNF signaling pathway, the PI3K-Akt signaling pathway, etc. The results of molecular docking showed the bioactive components in CKG had good binding ability with the key targets. The experimental results showed that CKG-medicated serum had a promoting effect on proliferating hBMSCs, increasing the expression of AKT, PI3K, ERK1, and IkB in cells and decreasing the expression of IKK in cells. Conclusion. CKG has a complex of multicomponent, multitarget, and multipathway. This study lays the theoretical foundation for further in vitro and in vivo experimental studies and further expands the clinical applications of CKG.


2018 ◽  
Vol 51 (6) ◽  
pp. 2523-2535 ◽  
Author(s):  
Bo Dai ◽  
Dan Wei ◽  
Ning-ning Zheng ◽  
Zhi-hong Chi ◽  
Na Xin ◽  
...  

Background/Aims: Inflammation plays a vital role in the etiology and pathogenesis of chronic noncommunicable diseases (NCDs), which are the leading health issues throughout the world. Our previous studies verified the satisfactory therapeutic effects of Coccomyxa gloeobotrydiformis (CGD) polysaccharide on several NCDs. In this study, we aimed to investigate the anti-inflammatory effects of CGD polysaccharide, and the corresponding molecular mechanisms, on lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. Methods: A viability assay and a lactate dehydrogenase (LDH) assay were used to measure the cytotoxic effects of CGD polysaccharide on LPS-stimulated RAW264.7 cells. To investigate the potential anti-inflammatory mechanisms of CGD polysaccharide in LPS-stimulated RAW264.7 cells, nitric oxide (NO) production was determined using a NO assay and the expression of inflammatory mediators (PGE2, iNOS and COX-2), inflammatory cytokines (TNF-α, IL-6, IL-1β and IL-10) and inflammation-related signaling pathways (the MAPK/NF-κB, PI3K/AKT/JNK, JAK/STAT and Nrf2/HO-1pathways) were observed by western blotting. The translocation of NF-κB p65 was also observed using an immunofluorescent assay. Results: CGD polysaccharide significantly inhibited LPS-induced NO production and PGE2 expression by reducing the expression of iNOS and COX-2. It also suppressed the expression of the pro-inflammatory cytokines TNF-α, IL-6 and IL-1β, and up-regulated the expression of the anti-inflammatory cytokine IL-10. Further experiments demonstrated that CGD polysaccharide could inhibit inflammatory signaling pathways (the MAPK/NF-κB, PI3K/AKT/JNK and JAK/STAT pathways). At the same time, it enhanced the anti-inflammatory pathway Nrf2/HO-1. In addition, CGD polysaccharide did not display any cytotoxic effects, even at a high concentration. Conclusion: Taken together, the results suggest that CGD polysaccharide significantly inhibits LPS-induced inflammation in RAW264.7 cells. This effect lies in its regulatory effects on the signaling pathways MAPK/ NF-κB, PI3K/AKT/JNK, JAK/STAT and Nrf2/HO-1.Our findings reveal that CGD polysaccharide has the potential to be used as a relatively safe and effective drug as part of the treatment of NCDs.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2075
Author(s):  
So-Yeon Kim ◽  
Minji Hong ◽  
Tae-Hee Kim ◽  
Ki Yeon Lee ◽  
Se Jin Park ◽  
...  

Bryophytes contain a variety of bioactive metabolites, but studies about the anti-inflammatory effect of bryophytes are meager. Therefore, the present study aimed to compare the anti-inflammatory effect of methanol extract of Marchantia polymorpha L. (liverwort) and Racomitrium canescens (Racomitrium moss) in lipopolysaccharide (LPS)-induced HaCaT cells. To evaluate the anti-inflammatory effect of liverwort and Racomitrium moss, the levels of nitric oxide (NO) production and the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 and IL-1β in LPS-induced HaCaT cells were measured. The methanol extract of liverwort and Racomitrium moss significantly decreased LPS-induced NO production in HaCaT cells. When compared with Racomitrium moss extract, pre-treatment with methanol extract of liverwort markedly inhibited the expression of iNOS, COX-2, IL-6, and IL-1β at the concentration of 100 µg/mL with the exception of TNF-α. Further, liverwort extract markedly attenuated the production of TNF-α, IL-6, and IL-1β in the culture medium. In addition, ethyl acetate and butanol fractions obtained from the methanol extract of liverwort showed remarkable inhibitory activity against the production of NO in LPS-stimulated HaCaT cells. The LC-MS data revealed the presence of bisbibenzyl types of bioactive components in the methanol extract of liverwort. These data demonstrate that liverwort extract exhibits effective inhibitory activity against the production of inflammatory mediators in LPS-induced HaCaT cells and may be useful for the treatment of inflammation-mediated diseases.


2021 ◽  
Vol 11 (13) ◽  
pp. 6055
Author(s):  
Akhtar Ali ◽  
En-Hyung Kim ◽  
Jong-Hyun Lee ◽  
Kang-Hyun Leem ◽  
Shin Seong ◽  
...  

Prolonged inflammation results in chronic diseases that can be associated with a range of factors. Medicinal plants and herbs provide synergistic benefits based on the interaction of multiple phytochemicals. The dried root of Scutellaria baicalensis Georgi and its compounds possess anti-inflammatory, anti-oxidative, and anticancer effects. Processing is a traditional method to achieve clinical benefits by improving therapeutic efficacy and lowering toxicity. In this study, we investigated the anti-inflammatory and anti-oxidant effect of processed Scutellaria baicalensis Georgi extract (PSGE) against lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Data using Griess assay and ELISA showed that PSGE decreased nitric oxide and prostaglandin E2 (PGE2) levels against LPS. PSGE treatment up-regulated 15-hydroxyprostaglandin dehydrogenase (PGDH), while cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 expression did not change. Interestingly, PGE2 inhibition was regulated by prostaglandin catabolic enzyme 15-PGDH rather than COX-2/mPGES-1, enzymes essential for PGE2 synthesis. Additionally, PSGE-suppressed LPS-induced IL-6 and TNF-α production through NF-κB signaling. NF-κB release from an inactive complex was inhibited by HO-1 which blocked IκBα phosphorylation. The ROS levels lowered by PSGE were measured with the H2DCFDA probe. PSGE activated NRF2 signaling and increased antioxidant Hmox1, Nqo1, and Txn1 gene expression, while reducing KEAP1 expression. In addition, pharmacological inhibition of HO-1 confirmed that the antioxidant enzyme induction by PSGE was responsible for ROS reduction. In conclusion, PSGE demonstrated anti-inflammatory and anti-oxidant effects due to NRF2/HO-1-mediated NF-κB and ROS inhibition.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1545
Author(s):  
Hwa-Young Song ◽  
Da-Eun Jeong ◽  
Mina Lee

The aim of this study was to identify the optimal extraction conditions for leaves of Osmanthus fragrans var. aurantiacus. Inhibitory effects of various extracts on NO production were compared. Antioxidant evaluations for total phenol and flavonoid contents were carried out using various extracts of O. fragrans var. aurantiacus leaves obtained under optimal extraction conditions that showed the greatest effect on NO production. The optimal method for extracting O. fragrans var. aurantiacus leaves resulted in an extract named OP OFLE. OP OFLE showed DPPH and ABTS radical scavenging activities in a concentration-dependent manner. Phillyrin (PH) was isolated as a major compound from OP OFLE by HPLC/DAD analysis. OP OFLE and PH reduced inducible nitric oxide (iNOS) and cyclooxygenase (COX)-2 protein expression and downregulated proinflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α in LPS-stimulated RAW 264.7 and HT-29 cells. To determine the signal pathway involved in the inhibition of NO production, a Western blot analysis was performed. Results showed that OP OFLE decreased phosphorylation of extracellular regulated kinase (pERK) 1/2 and the expression of nuclear factor-kappa B (NF-κB). Our results suggest that extracts of O. fragrans var. aurantiacus leaves and its major components have biological activities such as antioxidative and anti-inflammatory properties.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Weishuang Xue ◽  
Jinwei Li ◽  
Kailei Fu ◽  
Weiyu Teng

Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease that affects the quality of life of elderly individuals, while the pathogenesis of AD is still unclear. Based on the bioinformatics analysis of differentially expressed genes (DEGs) in peripheral blood samples, we investigated genes related to mild cognitive impairment (MCI), AD, and late-stage AD that might be used for predicting the conversions. Methods. We obtained the DEGs in MCI, AD, and advanced AD patients from the Gene Expression Omnibus (GEO) database. A Venn diagram was used to identify the intersecting genes. Gene Ontology (GO) and Kyoto Gene and Genomic Encyclopedia (KEGG) were used to analyze the functions and pathways of the intersecting genes. Protein-protein interaction (PPI) networks were constructed to visualize the network of the proteins coded by the related genes. Hub genes were selected based on the PPI network. Results. Bioinformatics analysis indicated that there were 61 DEGs in both the MCI and AD groups and 27 the same DEGs among the three groups. Using GO and KEGG analyses, we found that these genes were related to the function of mitochondria and ribosome. Hub genes were determined by bioinformatics software based on the PPI network. Conclusions. Mitochondrial and ribosomal dysfunction in peripheral blood may be early signs in AD patients and related to the disease progression. The identified hub genes may provide the possibility for predicting AD progression or be the possible targets for treatments.


2011 ◽  
Vol 39 (05) ◽  
pp. 943-956 ◽  
Author(s):  
Jen-Chieh Tsai ◽  
Wen-Huang Peng ◽  
Tai-Hui Chiu ◽  
Shang-Chih Lai ◽  
Chao-Ying Lee

The aims of this study intended to investigate the anti-inflammatory activity of the 70% ethanol extract from Scoparia dulcis (SDE) and betulinic acid on λ-carrageenan-induced paw edema in mice. The anti-inflammatory mechanism of SDE and betulinic acid was examined by detecting the levels of cyclooxygenase-2 (COX-2), nitric oxide (NO), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β) and malondialdehyde (MDA) in the edema paw tissue and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRd) in the liver. The betulinic acid content in SDE was detected by high performance liquid chromatography (HPLC). In the anti-inflammatory model, the results showed that SDE (0.5 and 1.0 g/kg) and betulinic acid (20 and 40 mg/kg) reduced the paw edema at 3, 4 and 5 h after λ-carrageenan administration. Moreover, SDE and betulinic acid affected the levels of COX-2, NO, TNF-α and IL1-β in the λ-carrageenan-induced edema paws. The activities of SOD, GPx and GRd in the liver tissue were increased and the MDA levels in the edema paws were decreased. It is suggested that SDE and betulinic acid possessed anti-inflammatory activities and the anti-inflammatory mechanisms appear to be related to the reduction of the levels of COX-2, NO, TNF-α and IL1-β in inflamed tissues, as well as the inhibition of MDA level via increasing the activities of SOD, GPx and GRd. The analytical result showed that the content of betulinic acid in SDE was 6.25 mg/g extract.


Sign in / Sign up

Export Citation Format

Share Document