scholarly journals Universal principles underlying segmental structures in parrot song and human speech

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dan C. Mann ◽  
W. Tecumseh Fitch ◽  
Hsiao-Wei Tu ◽  
Marisa Hoeschele

AbstractDespite the diversity of human languages, certain linguistic patterns are remarkably consistent across human populations. While syntactic universals receive more attention, there is stronger evidence for universal patterns in the inventory and organization of segments: units that are separated by rapid acoustic transitions which are used to build syllables, words, and phrases. Crucially, if an alien researcher investigated spoken human language how we analyze non-human communication systems, many of the phonological regularities would be overlooked, as the majority of analyses in non-humans treat breath groups, or “syllables” (units divided by silent inhalations), as the smallest unit. Here, we introduce a novel segment-based analysis that reveals patterns in the acoustic output of budgerigars, a vocal learning parrot species, that match universal phonological patterns well-documented in humans. We show that song in four independent budgerigar populations is comprised of consonant- and vowel-like segments. Furthermore, the organization of segments within syllables is not random. As in spoken human language, segments at the start of a vocalization are more likely to be consonant-like and segments at the end are more likely to be longer, quieter, and lower in fundamental frequency. These results provide a new foundation for empirical investigation of language-like abilities in other species.

2021 ◽  
Vol 12 ◽  
Author(s):  
Irene M. Pepperberg

Deciphering nonhuman communication – particularly nonhuman vocal communication – has been a longstanding human quest. We are, for example, fascinated by the songs of birds and whales, the grunts of apes, the barks of dogs, and the croaks of frogs; we wonder about their potential meaning and their relationship to human language. Do these utterances express little more than emotional states, or do they convey actual bits and bytes of concrete information? Humans’ numerous attempts to decipher nonhuman systems have, however, progressed slowly. We still wonder why only a small number of species are capable of vocal learning, a trait that, because it allows for innovation and adaptation, would seem to be a prerequisite for most language-like abilities. Humans have also attempted to teach nonhumans elements of our system, using both vocal and nonvocal systems. The rationale for such training is that the extent of success in instilling symbolic reference provides some evidence for, at the very least, the cognitive underpinnings of parallels between human and nonhuman communication systems. However, separating acquisition of reference from simple object-label association is not a simple matter, as reference begins with such associations, and the point at which true reference emerges is not always obvious. I begin by discussing these points and questions, predominantly from the viewpoint of someone studying avian abilities. I end by examining the question posed by Premack: do nonhumans that have achieved some level of symbolic reference then process information differently from those that have not? I suggest the answer is likely “yes,” giving examples from my research on Grey parrots (Psittacus erithacus).


2019 ◽  
Vol 375 (1789) ◽  
pp. 20190046 ◽  
Author(s):  
W. Tecumseh Fitch

Studies of animal communication are often assumed to provide the ‘royal road’ to understanding the evolution of human language. After all, language is the pre-eminent system of human communication: doesn't it make sense to search for its precursors in animal communication systems? From this viewpoint, if some characteristic feature of human language is lacking in systems of animal communication, it represents a crucial gap in evolution, and evidence for an evolutionary discontinuity. Here I argue that we should reverse this logic: because a defining feature of human language is its ability to flexibly represent and recombine concepts, precursors for many important components of language should be sought in animal cognition rather than animal communication. Animal communication systems typically only permit expression of a small subset of the concepts that can be represented and manipulated by that species. Thus, if a particular concept is not expressed in a species' communication system this is not evidence that it lacks that concept. I conclude that if we focus exclusively on communicative signals, we sell the comparative analysis of language evolution short. Therefore, animal cognition provides a crucial (and often neglected) source of evidence regarding the biology and evolution of human language. This article is part of the theme issue ‘What can animal communication teach us about human language?’


2021 ◽  
Vol 11 (1) ◽  
pp. 113
Author(s):  
Aziz Jaber ◽  
Osama Omari ◽  
Mujdey Abudalbuh

The paper is a critique of the existence of protolanguage based on some personal reasoning given the findings of previous research. This paper focuses on the nature of semantic compositionality and its existence (and therefore manifestations) in animal communication systems as evidence of the existence of protolanguage. This compositional state that started to color human language has paved the way to hierarchical syntax and thus has helped in the emergence of a recursive, fully complex language. On the other hand, non-human animal communication systems, including those examined in this paper, have not managed to progress beyond the holophrastic state, and thus remained highly confined and unproductive. This is explicated by the observation that these systems do not employ discrete meaningful units that can be used recursively in different linguistic contexts, a necessary condition for a system of communication to be compositional. This is interesting in the study of language evolution as it could suggest that human language could not have evolved from a rudimentary, intermediate stage called protolanguage. Speculating about the existence of protolanguage subsumes convergent evolution (e.g. songbirds). The lack of semantic compositionality in non-human communication system suggests that convergent evolution is hard to prove, which puts the existence of protolanguage on the line. This thesis is, however, far from being established and requires a lot of further research to prove its validity.   Received: 21 September 2020 / Accepted: 3 November 2020 / Published: 17 January 2021


Languages ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Jon T. Sakata ◽  
David Birdsong

Comparisons between the communication systems of humans and animals are instrumental in contextualizing speech and language into an evolutionary and biological framework and for illuminating mechanisms of human communication. As a complement to previous work that compares developmental vocal learning and use among humans and songbirds, in this article we highlight phenomena associated with vocal learning subsequent to the development of primary vocalizations (i.e., the primary language (L1) in humans and the primary song (S1) in songbirds). By framing avian “second-song” (S2) learning and use within the human second-language (L2) context, we lay the groundwork for a scientifically-rich dialogue between disciplines. We begin by summarizing basic birdsong research, focusing on how songs are learned and on constraints on learning. We then consider commonalities in vocal learning across humans and birds, in particular the timing and neural mechanisms of learning, variability of input, and variability of outcomes. For S2 and L2 learning outcomes, we address the respective roles of age, entrenchment, and social interactions. We proceed to orient current and future birdsong inquiry around foundational features of human bilingualism: L1 effects on the L2, L1 attrition, and L1<–>L2 switching. Throughout, we highlight characteristics that are shared across species as well as the need for caution in interpreting birdsong research. Thus, from multiple instructive perspectives, our interdisciplinary dialogue sheds light on biological and experiential principles of L2 acquisition that are informed by birdsong research, and leverages well-studied characteristics of bilingualism in order to clarify, contextualize, and further explore S2 learning and use in songbirds.


Crisis ◽  
2012 ◽  
Vol 33 (2) ◽  
pp. 106-112 ◽  
Author(s):  
Christopher M. Bloom ◽  
Shareen Holly ◽  
Adam M. P. Miller

Background: Historically, the field of self-injury has distinguished between the behaviors exhibited among individuals with a developmental disability (self-injurious behaviors; SIB) and those present within a normative population (nonsuicidal self-injury; NSSI),which typically result as a response to perceived stress. More recently, however, conclusions about NSSI have been drawn from lines of animal research aimed at examining the neurobiological mechanisms of SIB. Despite some functional similarity between SIB and NSSI, no empirical investigation has provided precedent for the application of SIB-targeted animal research as justification for pharmacological interventions in populations demonstrating NSSI. Aims: The present study examined this question directly, by simulating an animal model of SIB in rodents injected with pemoline and systematically manipulating stress conditions in order to monitor rates of self-injury. Methods: Sham controls and experimental animals injected with pemoline (200 mg/kg) were assigned to either a low stress (discriminated positive reinforcement) or high stress (discriminated avoidance) group and compared on the dependent measures of self-inflicted injury prevalence and severity. Results: The manipulation of stress conditions did not impact the rate of self-injury demonstrated by the rats. The results do not support a model of stress-induced SIB in rodents. Conclusions: Current findings provide evidence for caution in the development of pharmacotherapies of NSSI in human populations based on CNS stimulant models. Theoretical implications are discussed with respect to antecedent factors such as preinjury arousal level and environmental stress.


2018 ◽  
Vol 14 (3) ◽  
pp. 261-273 ◽  
Author(s):  
Hongwei Jia

Abstract Previous semiotic research classified human signs into linguistic signs and non-linguistic signs, with reference to human language and the writing system as the core members of the sign family. However, this classification cannot cover all the types of translation in the broad sense in terms of sign transformation activities. Therefore, it is necessary to reclassify the signs that make meaning into tangible signs and intangible signs based on the medium of the signs. Whereas tangible signs are attached to the outer medium of the physical world, intangible signs are attached to the inner medium of the human cerebral nervous system. The three types of transformation, which are namely from tangible signs into tangible signs, from tangible signs into intangible signs, and from intangible signs into tangible signs, lay a solid foundation for the categorization of sign activities in translation semiotics. Such a reclassification of signs can not only enrich semiotic theories of sign types, human communication, and sign-text interpretation, but also inspire new research on translation types, the translation process, translators’ thinking systems and psychology, and the mechanism of machine translation.


2016 ◽  
Vol 8 (4) ◽  
pp. 34
Author(s):  
A. Villa Rus ◽  
J. C. Cigudosa ◽  
J. L. Carrasco Juan ◽  
A. Otero Gomez ◽  
T. Acosta Almeida ◽  
...  

<p class="1Body">With colourful plumage, charismatic character and vocal learning abilities, parrots are one of the most striking and recognizable bird groups. Their attractiveness has drawn human attention for centuries, and members of the Psittaciformes order were, also, among the first avian species to be subject to cytogenetic studies which have contributed to understand their taxonomic and evolutionary relationships.</p><p class="1Body">We present here the karyological results collected by the study of thirteen parrot species new to karyology. These results are additionally supported by G banded preparations obtained in five species.</p><p class="1Body">The order Psittaciformes is an interesting example of a, typically, non migratory avian lineage with Gondwanaland origin, whose evolutionary radiation has been shaped by the Cenozoic geographic and climatic events that affected the land masses derived from the Gondwanaland continental split.</p><p class="1Body">We discuss the results of our studies, in conjunction with the previously compiled Psittaciformes cytogenetic data to delineate a picture of the chromosomal evolution of the order, concurrently with the biogeographic history of the lands in the southern Hemisphere.</p><p class="1Body">Considering the available data on parrot cytogenetics, a "standard parrot karyotype pattern" is proposed for evolutionary comparisons.</p><p class="1Body">Several biogeographic, and phylogenetically related "karyogram patterns" are also identified, and mechanisms of chromosome rearrangement that associate this patterns among them, and with the standard parrot karyotype pattern are proposed. These schemes on parrot chromosomal variation are discussed in relation to the general avian chromosome evolutionary theses proposed by cytogenetic and molecular genomic researchers.</p>


2017 ◽  
Vol 18 (3) ◽  
pp. 314-329 ◽  
Author(s):  
Casey J. Lister ◽  
Nicolas Fay

Following a synthesis of naturalistic and experimental studies of language creation, we propose a theoretical model that describes the process through which human communication systems might arise and evolve. Three key processes are proposed that give rise to effective, efficient and shared human communication systems: (1) motivated signs that directly resemble their meaning facilitate cognitive alignment, improving communication success; (2) behavioral alignment onto an inventory of shared sign-to-meaning mappings bolsters cognitive alignment between interacting partners; (3) sign refinement, through interactive feedback, enhances the efficiency of the evolving communication system. By integrating the findings across a range of diverse studies, we propose a theoretical model of the process through which the earliest human communication systems might have arisen and evolved. Importantly, because our model is not bound to a single modality it can describe the creation of shared sign systems across a range of contexts, informing theories of language creation and evolution.


Author(s):  
Rui P. Chaves ◽  
Michael T. Putnam

This book is about one of the most intriguing features of human communication systems: the fact that words which go together in meaning can occur arbitrarily far away from each other. The kind of long-distance dependency that this volume is concerned with has been the subject of intense linguistic and psycholinguistic research for the last half century, and offers a unique insight into the nature of grammatical structures and their interaction with cognition. The constructions in which these unbounded dependencies arise are difficult to model and come with a rather puzzling array of constraints which have defied characterization and a proper explanation. For example, there are filler-gap dependencies in which the filler phrase is a plural phrase formed from the combination of each of the extracted phrases, and there are filler-gap constructions in which the filler phrase itself contains a gap that is linked to another filler phrase. What is more, different types of filler-gap dependency can compound, in the same sentence. Conversely, not all kinds of filler-gap dependencies are equally licit; some are robustly ruled out by the grammar whereas others have a less clear status because they have graded acceptability and can be made to improve in ideal contexts and conditions. This work provides a detailed survey of these linguistic phenomena and extant accounts, while also incorporating new experimental evidence to shed light on why the phenomena are the way they are and what important research on this topic lies ahead.


2019 ◽  
Vol 116 (39) ◽  
pp. 19579-19584 ◽  
Author(s):  
Sabrina Engesser ◽  
Jennifer L. Holub ◽  
Louis G. O’Neill ◽  
Andrew F. Russell ◽  
Simon W. Townsend

A core component of human language is its combinatorial sound system: meaningful signals are built from different combinations of meaningless sounds. Investigating whether nonhuman communication systems are also combinatorial is hampered by difficulties in identifying the extent to which vocalizations are constructed from shared, meaningless building blocks. Here we present an approach to circumvent this difficulty and show that a pair of functionally distinct chestnut-crowned babbler (Pomatostomus ruficeps) vocalizations can be decomposed into perceptibly distinct, meaningless entities that are shared across the 2 calls. Specifically, by focusing on the acoustic distinctiveness of sound elements using a habituation-discrimination paradigm on wild-caught babblers under standardized aviary conditions, we show that 2 multielement calls are composed of perceptibly distinct sounds that are reused in different arrangements across the 2 calls. Furthermore, and critically, we show that none of the 5 constituent elements elicits functionally relevant responses in receivers, indicating that the constituent sounds do not carry the meaning of the call and so are contextually meaningless. Our work, which allows combinatorial systems in animals to be more easily identified, suggests that animals can produce functionally distinct calls that are built in a way superficially reminiscent of the way that humans produce morphemes and words. The results reported lend credence to the recent idea that language’s combinatorial system may have been preceded by a superficial stage where signalers neither needed to be cognitively aware of the combinatorial strategy in place, nor of its building blocks.


Sign in / Sign up

Export Citation Format

Share Document