scholarly journals Evaluation of antimicrobial activities of plant aqueous extracts against Salmonella Typhimurium and their application to improve safety of pork meat

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alkmini Gavriil ◽  
Evangelia Zilelidou ◽  
Angelis-Evangelos Papadopoulos ◽  
Danae Siderakou ◽  
Konstantinos M. Kasiotis ◽  
...  

AbstractNine odorless laboratory-collected hydro-distilled aqueous extracts (basil, calendula, centrifuged oregano, corn silk, laurel, oregano, rosemary, spearmint, thyme) and one industrial steam-distilled oregano hydrolate acquired as by-products of essential oils purification were screened for their in vitro antimicrobial activity against three Salmonella Typhimurium strains (4/74, FS8, FS115) at 4 and 37 °C. Susceptibility to the extracts was mainly plant- and temperature-dependent, though strain dependent effects were also observed. Industrial oregano hydrolate eliminated strains immediately after inoculation, exhibiting the highest antimicrobial potential. Hydro-distilled extracts eliminated/reduced Salmonella levels during incubation at 4 °C. At 37 °C, oregano, centrifuged oregano, thyme, calendula and basil were bactericidal while spearmint, rosemary and corn silk bacteriostatic. A strain-dependent effect was observed for laurel. The individual or combined effect of marinades and edible coatings prepared of industrial hydrolate and hydro-distilled oregano extracts with or without oregano essential oil (OEO) was tested in pork meat at 4 °C inoculated with FS8 strain. Lower in situ activity was observed compared to in vitro assays. Marinades and edible coatings prepared of industrial oregano hydrolate + OEO were the most efficient in inhibiting pathogen. Marination in oregano extract and subsequent coating with either 50% oregano extract + OEO or water + OEO enhanced the performance of oregano extract. In conclusion, by-products of oregano essential oil purification may be promising alternative antimicrobials to pork meat stored under refrigeration when applied in the context of multiple hurdle approach.

Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 614
Author(s):  
María Melissa Gutiérrez-Pacheco ◽  
Luis Alberto Ortega-Ramírez ◽  
Brenda Adriana Silva-Espinoza ◽  
Manuel Reynaldo Cruz-Valenzuela ◽  
Gustavo Adolfo González-Aguilar ◽  
...  

The objective of the present study is to evaluate the effect of individual and combined coatings of chitosan (0.008 g·mL−1) and carnauba wax (0.1 g·mL−1) with oregano essential oil (OEO, 0.08 g·mL−1) to reduce dehydration and microbial decay of fresh cucumbers stored at 10 °C. Chitosan-OEO-wax films showed the lowest water vapor transmission rate (0.141 g·m−2·h−1), compared to single chitosan films (0.257 g·m−2·h−1). While chitosan-OEO films completely inhibited the in vitro growth of Alternaria alternata and reduced the growth of Salmonella Typhimurium, Escherichia coli O157:H7, mesophilic bacteria, and fungi isolated from decayed cucumbers. Besides, the infrared analysis of chitosan-OEO-wax films showed shifts in O–H and N–H absorption bands, indicating possible hydrogen bonding between the components. Wax and wax-OEO were the most effective coatings to prevent weight loss in cucumbers during 15 days of storage at 10 °C, while the most effective antimicrobial treatments were chitosan and chitosan-OEO. Therefore, these results showed that carnauba wax and carnauba wax-OEO coatings were the most effective in weight loss, whereas chitosan and chitosan-OEO were the most effective to reduce the microbial load of the treated fresh cucumber.


Pharmacologia ◽  
2016 ◽  
Vol 7 (4) ◽  
pp. 193-201 ◽  
Author(s):  
Joao Batista Teixeir Rocha ◽  
Gerlania de Oliveira Leite ◽  
Albys Ferrer Dubois ◽  
Rodrigo Lopes Seeger ◽  
Aline Augusti Boligon ◽  
...  

2020 ◽  
Author(s):  
Farzaneh Mirzaei ◽  
Roghayeh Norouzi ◽  
Abolghasem Siyadatpanah ◽  
Bibi Fatemeh Haghirosadat ◽  
Fatemeh Rezaei ◽  
...  

Abstract Background: Trichomonas vaginalis, a parasitic flagellated protozoan, is one of the main non-viral sexually-transmitted diseases worldwide. Treatment options for trichomoniasis are limited to nitroimidazole compounds. However, resistance to these drugs has been reported, which requires the development of new anti-Trichomonas agents that confer suitable efficacy and less toxicity.Methods: In the present work, we assessed the effectiveness of the liposomal system containing essential oils of Bunium persicum and Trachyspermum ammi against T. vaginalis in vitro. Liposomal vesicles were prepared with phosphatidylcholine (70%) and cholesterol (30%) using the thin-film method. The essential oils of B. persicum and T. ammi were loaded into the liposomes using the inactive loading method. Liposomal vesicles were made for two plants separately. Their physicochemical features were tested using Zeta-Sizer, AFM and SEM. The anti-Trichomonas activity was determined after 12 and 24 hours of parasite cultures in TYI-S-33 medium. Results: After 12 and 24 hours of administration, the IC50 of the B. persicum essential oil nano-liposomes induced 14.41 µg/mL and 45.19 µg/mL, respectively. The IC50 of T. ammi essential oil nano-liposomes induced 8.08 µg/mL and 25.81 µg/mL, respectively. Conclusions: These data suggested that nano-liposomes of the essential oils of B. persicum and T. ammi may be a promising alternative to current treatments for Trichomonas infection.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1605
Author(s):  
Annachiara Pirozzi ◽  
Vittoria Del Grosso ◽  
Giovanna Ferrari ◽  
Francesco Donsì

Edible coatings have attracted significant interest in maintaining quality and improving the shelf life of fresh fruit and vegetables. This study aimed to improve tomato storability by using edible coatings, based on alginate cross-linked with calcium chloride, and containing an oregano essential oil (OEO) nanoemulsion as a natural antimicrobial. The coating formulations were preliminary optimized in terms of alginate and calcium chloride concentrations, using response surface methodology, to obtain a thin (~5 µm) and uniform layer on the tomatoes surface. The optimized coating (prepared using sequential dipping in a 0.5% w/w sodium alginate solution and in a 2.0% w/w calcium chloride solution) was enriched by incorporating an OEO nanoemulsion, formulated with lecithin as a natural emulsifier, at an OEO concentration of 0.17% w/w in the alginate solution. The nanoemulsion did not significantly affect the coating thickness and uniformity but improved the wettability of the tomato skin. More specifically, the alginate-based edible coatings exhibited a strong interaction with the hydrophobic tomato skin surface (higher than water), promoting surface adhesion. The addition of OEO nanoemulsion in the coating, by providing more hydrophobic sites, further improved the wetting capability and adhesion of the coating solution on the tomato surface. The developed edible coatings successfully contributed to prolonging the tomato shelf life, by reducing the growth of the endogenous microbial flora (total microbial load, yeasts, and molds) over 14 days at room temperature in comparison with the control, with significantly better performances for the edible coating containing the OEO nanoemulsion.


2020 ◽  
Vol 17 (1) ◽  
pp. 29-34
Author(s):  
Ana Lucía Solarte ◽  
Rafael Jesús Astorga ◽  
Fabiana C. de Aguiar ◽  
Carmen Tarradas ◽  
Inmaculada Luque ◽  
...  

2012 ◽  
Vol 110 (2) ◽  
pp. 190-199 ◽  
Author(s):  
Sara Beirão da Costa ◽  
Claudia Duarte ◽  
Ana I. Bourbon ◽  
Ana C. Pinheiro ◽  
Ana Teresa Serra ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 878
Author(s):  
Luz Espinosa-Sandoval ◽  
Claudia Ochoa-Martínez ◽  
Alfredo Ayala-Aponte ◽  
Lorenzo Pastrana ◽  
Catarina Gonçalves ◽  
...  

The food industry has increased its interest in using “consumer-friendly” and natural ingredients to produce food products. In the case of emulsifiers, one of the possibilities is to use biopolymers with emulsification capacity, such as octenyl succinic anhydride modified starch, which can be used in combination with other polysaccharides, such as chitosan and carboxymethylcellulose, in order to improve the capacity to protect bioactive compounds. In this work, multilayer nano-emulsion systems loaded with oregano essential oil were produced by high energy methods and characterized. The process optimization was carried out based on the evaluation of particle size, polydispersity index, and zeta potential. Optimal conditions were achieved for one-layer nano-emulsions resulting in particle size and zeta potential of 180 nm and −42 mV, two layers (after chitosan addition) at 226 nm and 35 mV, and three layers (after carboxymethylcellulose addition) of 265 nm and −1 mV, respectively. The encapsulation efficiency of oregano essential oil within nano-emulsions was 97.1%. Stability was evaluated up to 21 days at 4 and 20 °C. The three layers nano-emulsion demonstrated to be an efficient delivery system of oregano essential oil, making 40% of the initial oregano essential oil available versus 13% obtained for oregano essential oil in oil, after exposure to simulated digestive conditions.


2020 ◽  
Author(s):  
Farzaneh Mirzaei ◽  
Roghayeh Norouzi ◽  
Abolghasem Siyadatpanah ◽  
Bibi Fatemeh Haghirosadat ◽  
Fatemeh Rezaei ◽  
...  

Abstract Background: Trichomonas vaginalis, a parasitic flagellated protozoan, is one of the main non-viral sexually-transmitted diseases worldwide. Treatment options for trichomoniasis are limited to nitroimidazole compounds. However, resistance to these drugs has been reported, which requires the development of new anti-Trichomonas agents that confer suitable efficacy and less toxicity.Methods: In the present work, we assessed the effectiveness of the liposomal system containing essential oils of Bunium persicum and Trachyspermum ammi against T. vaginalis in vitro. Liposomal vesicles were prepared with phosphatidylcholine (70%) and cholesterol (30%) using the thin-film method. The essential oils of B. persicum and T. ammi were loaded into the liposomes using the inactive loading method. Liposomal vesicles were made for two plants separately. Their physicochemical features were tested using Zeta-Sizer, AFM and SEM. The anti-Trichomonas activity was determined after 12 and 24 hours of parasite cultures in TYI-S-33 medium. Results: After 12 and 24 hours of administration, the IC50 of the B. persicum essential oil nano-liposomes induced 14.41 µg/mL and 45.19 µg/mL, respectively. The IC50 of T. ammi essential oil nano-liposomes induced 8.08 µg/mL and 25.81 µg/mL, respectively. Conclusions: These data suggested that nano-liposomes of the essential oils of B. persicum and T. ammi may be a promising alternative to current treatments for Trichomonas infection.


Sign in / Sign up

Export Citation Format

Share Document