scholarly journals Early life dietary intervention in dairy calves results in a long-term reduction in methane emissions

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. J. Meale ◽  
M. Popova ◽  
C. Saro ◽  
C. Martin ◽  
A. Bernard ◽  
...  

AbstractRecent evidence suggests that changes in microbial colonization of the rumen prior to weaning may imprint the rumen microbiome and impact phenotypes later in life. We investigated how dietary manipulation from birth influences growth, methane production, and gastrointestinal microbial ecology. At birth, 18 female Holstein and Montbéliarde calves were randomly assigned to either treatment or control (CONT). Treatment was 3-nitrooxypropanol (3-NOP), an investigational anti-methanogenic compound that was administered daily from birth until three weeks post-weaning (week 14). Samples of rumen fluid and faecal content were collected at weeks 1, 4, 11, 14, 23, and 60 of life. Calves were tested for methane emissions using the GreenFeed system during the post-weaning period (week 11–23 and week 56–60 of life). Calf physiological parameters (BW, ADG and individual VFA) were similar across groups throughout the trial. Treated calves showed a persistent reduction in methane emissions (g CH4/d) throughout the post-weaning period up to at least 1 year of life, despite treatment ceasing three weeks post-weaning. Similarly, despite variability in the abundance of individual taxa across weeks, the rumen bacterial, archaeal and fungal structure differed between CONT and 3-NOP calves across all weeks, as visualised using sparse-PLS-DA. Similar separation was also observed in the faecal bacterial community. Interestingly, despite modest modifications to the abundance of rumen microbes, the reductive effect of 3-NOP on methane production persisted following cessation of the treatment period, perhaps indicating a differentiation of the ruminal microbial ecosystem or a host response triggered by the treatment in the early development phase.

2021 ◽  
Vol 12 ◽  
Author(s):  
Johanna Brede ◽  
Manuela Peukert ◽  
Björn Egert ◽  
Gerhard Breves ◽  
Melanie Brede

Methane emissions by ruminants contribute to global warming and result in a loss of dietary energy for the animals. One possibility of reducing methane emissions is by dietary strategies. In the present trial, we investigated the long-term effects of Mootral, a feed additive consisting of garlic powder (Allium sativum) and bitter orange extracts (Citrus aurantium), on fermentation parameters and the microbial community in the rumen simulation technique (RUSITEC) system. The experiment lasted 38 days and was divided into three phases: an equilibration period of 7 days, a baseline period (BL) of 3 days, and experimental period (EP) of 28 days. Twelve fermentation vessels were divided into three groups (n = 4): control (CON), short-term (ST), and long-term (LT) application. From day 11 to day 27, 1.7 g of Mootral was added to the ST vessels; LT vessels received 1.7 g of Mootral daily for the entire EP. With the onset of Mootral application, methane production was significantly reduced in both groups until day 18. Thereafter, the production rate returned to the initial quantity. Furthermore, the short chain fatty acid fermentation profile was significantly altered by Mootral application; the molar proportion of acetate decreased, while the proportions of propionate and butyrate increased. Metabolomic analysis revealed further changes in metabolite concentrations associated with the Mootral supplementation period. The methyl coenzyme-M reductase gene copy number was reduced in the liquid and solid phase, whereas the treatment did not affect the abundance of bacteria. At the end of the BL, Methanomicrobia was the most abundant archaeal class. Mootral supplementation induced an increase in the relative abundance of Methanomassiliicoccales and a reduction in the relative abundance of Methanomicrobia, however, this effect was transient. Abundances of bacterial families were only marginally altered by the treatment. In conclusion, Mootral has the transient ability to reduce methane production significantly due to a selective effect on archaea numbers and archaeal community composition with little effect on the bacterial community.


2019 ◽  
Vol 34 (4) ◽  
pp. 421-428
Author(s):  
Yasunori Baba ◽  
Yu Matsuki ◽  
Shuhei Takizawa ◽  
Yoshihisa Suyama ◽  
Chika Tada ◽  
...  

2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Tansol Park ◽  
Laura M. Cersosimo ◽  
Wendy Radloff ◽  
Geoffrey I. Zanton ◽  
Wenli Li

Abstract Background Targeted modification of the dairy calf ruminal microbiome has been attempted through rumen fluid inoculation to alter productive phenotypes later in life. However, sustainable effects of the early life interventions have not been well studied, particularly on the metabolically active rumen microbiota and its functions. This study investigated the sustained effects of adult-derived rumen fluid inoculations in pre-weaning dairy calves on the active ruminal microbiome of post-weaned dairy calves analyzed via RNA-sequencing. Results Two different adult-derived microbial inocula (bacterial- or protozoal-enriched rumen fluid; BE or PE, respectively) were administered in pre-weaned calves (3–6 weeks) followed by analyzing active rumen microbiome of post-weaned calves (9 weeks). The shared bacterial community at the genus level of 16S amplicon-seq and RNA-seq datasets was significantly different (P = 0.024), 21 out of 31 shared major bacterial genera differed in their relative abundance between the two analytic pipelines. No significant differences were found in any of the prokaryotic alpha- and beta-diversity measurements (P > 0.05), except the archaeota that differed for BE based on the Bray–Curtis dissimilarity matrix (P = 0.009). Even though the relative abundances of potentially transferred microbial and functional features from the inocula were minor, differentially abundant prokaryotic genera significantly correlated to various fermentation and animal measurements including butyrate proportion, body weight, and papillae length and counts. The overall microbial functions were affected quantitatively by BE and qualitatively by PE (P < 0.05), and this might be supported by the individual KEGG module and CAZymes profile differences. Exclusive networks between major active microbial (bacterial and archaeal genera) and functional features (KEGG modules) were determined which were differed by microbial inoculations. Conclusions This study demonstrated that actively transcribed microbial and functional features showed reliable connections with different fermentations and animal development responses through adult rumen fluid inoculations compared to our previous 16S amplicon sequencing results. Exclusive microbial and functional networks of the active rumen microbiome of dairy calves created by BE and PE might also be responsible for the different ruminal and animal characteristics. Further understanding of the other parts of the gastrointestinal tract (e.g., abomasum, omasum, and small intestine) using metatranscriptomics will be necessary to elucidate undetermined biological factors affected by microbial inoculations.


1995 ◽  
Vol 46 (6) ◽  
pp. 1149 ◽  
Author(s):  
SI Godfrey ◽  
TG Nagaraja ◽  
SW Winslow ◽  
JB Rowe

Profiles of rumen fermentation were examined in sheep supplemented with barley or barley plus virginiamycin for 7 weeks and challenged with 1.7 kg of barley with or without virginiamycin. Twenty-five sheep were housed in individual pens and fed chaff, up to a maximum of 1.4 kg/day. Sheep were allocated to one of three treatments: no grain supplement (n = 5), barley grain 700 g twice weekly (n = 10) or barley with virginiamycin (40 g/t grain; n = 10). After 7 weeks, five animals in each treatment group fed grain received 1.7 kg of barley and five received 1.7 kg of barley plus virginiamycin (40 g/t). Sheep supplemented with barley alone maintained a normal pattern of rumen fermentation in response to 1.7 kg of barley indicating adaptation of rumen microbes to grain feeding. In animals supplemented with barley on its own and then fed barley plus virginiamycin there were higher concentrations of L-lactic acid (P < 0.001) and ammonia (P < 0.01) and a lower rumen pH (P < 0.01) than sheep in other treatments at 9, 12 and 24 h following grain feeding. The number of protozoa was decreased (P < 0.001) 24 h following feeding in sheep supplemented with barley and challenged with barley plus virginiamycin compared to pre-feeding (0 h) counts, but not in other treatment groups. Incubations of rumen fluid with glucose from sheep supplemented with barley and barley plus virginiamycin indicated virginiamycin was still effective in reducing L-lactate production following 9 weeks of supplement feeding. The results indicate virginiamycin may disrupt rumen function in sheep already adapted to grain that has not been treated with virginiamycin.


2013 ◽  
Vol 53 (9) ◽  
pp. 876 ◽  
Author(s):  
C. Bath ◽  
M. Morrison ◽  
E. M. Ross ◽  
B. J. Hayes ◽  
B. G. Cocks

The rumen of the dairy cow contains a rich and diverse collection of microbes that during feed digestion produce significant quantities of methane gas and ammonia, both of which contribute to greenhouse gas emissions. Strategies to redirect rumen carbon and nitrogen metabolism away from these products provide opportunities for significant productivity improvements in livestock systems not only by improving nutrient retention, but also by reducing greenhouse gas emissions. In order to develop these strategies, a greater knowledge of the diversity of the microbes within their rumen and their genomic capability is required. Many have used several techniques to study the rumen microbes, and the technology continues to improve. Among them include researchers at the Department of Primary Industries Victoria (DPI Vic) and the Dairy Futures Cooperative Research Centre (CRC) who are addressing the issue of regulation of methane emissions in dairy cattle, while scientists in Queensland and New South Wales, as part of the most recent Beef CRC program, focus on beef cattle. In this brief review, we examine how the techniques used in rumen microbial ecology have changed, and how technology improvements continue to allow us to examine the rumen microbiota of cattle and other ruminants, so as to better understand and possibly select animals with superior traits, leading to improvements in feed efficiency, methane emissions and nitrogen retention.


2005 ◽  
Vol 56 (8) ◽  
pp. 803 ◽  
Author(s):  
C. Sar ◽  
B. Mwenya ◽  
B. Pen ◽  
R. Morikawa ◽  
K. Takaura ◽  
...  

The suppressing effects of different concentrations of nitrate (0, 5, 10, 15, and 20 mm) or nisin (0, 5, 10, 15, 20, and 30 μmol/L) on in vitro methane production were examined with mixed rumen microbes using the in vitro continuous incubation system. The effects of different concentrations of nisin (10, 20, and 30 μmol/L) on in vitro nitrate/nitrite reduction were examined for methane suppression without any nitrate toxicity. The culture mixture consisted of 400 mL of strained rumen fluid from 2 non-lactating Holstein cows fed a diet of oaten hay, alfalfa hay cube, and concentrates (35 : 35 : 30) at maintenance level, and 400 mL of autoclaved buffer solution. Methane production was decreased with increasing levels of nitrate. As the concentration of nisin increased from 5 to 30 μmol/L, methane production was decreased by 14–40%. A decrease in acetate to propionate ratio and increase in total volatile fatty acids were observed as the concentration of nisin increased. Toxic nitrite accumulation was unaffected by increasing levels of nisin. In conclusion, nisin improved some of the parameters of ruminal fermentation and inhibited methane production, but did not decrease nitrate toxicity when nitrate was used to inhibit methane production.


2007 ◽  
Vol 2007 ◽  
pp. 47-47 ◽  
Author(s):  
D.R. Yanez-Ruiz ◽  
K.J. Hart ◽  
A. Belanche ◽  
A.I. Martin-Garcia ◽  
C.J. Newbold

Livestock are one of the largest single sources of methane emission, equivalent to 15-20 % of total anthropogenic methane. Selective suppression of the rumen protozoa has been suggested to be promising approach to reduce methane release (Moss et al., 2000) as up to 25 % of the methanogens in the rumen are associated with protozoa (Newbold et al., 1995). However, contradictory results have been reported between in vitro and in vivo data and short and long term defaunation experiments (Ranilla et al., 2003). This study was carried out to investigate the effect of the absence of protozoa in the rumen on enteric methane production by lambs.


2012 ◽  
Vol 52 (4) ◽  
pp. 225 ◽  
Author(s):  
P. M. Kennedy ◽  
E. Charmley

In the national greenhouse inventory, methane emissions from the Australian tropical beef herd are derived from cattle fed two diets. In the experiments reported here, methane production was measured by open-circuit gas exchange from 13 Brahman cattle offered 22 diets from combinations of five tropical grass species and five legumes, with a minimum of three steers per diet. All diets were offered daily ad libitum, with the exception of three legume diets fed without grass and leucaena (Leucaena leucocephala) mixed with grass, which were offered at 15 g dry matter per kg liveweight. Diets were fed as long-chopped dried hay, with the exception of leucaena, which was harvested and fed within 2 days. For the data from cattle fed diets of grass and grass mixed with legumes, methane production could be predicted as 19.6 g/kg forage dry matter intake (residual standard deviation 12.3). Observed methane yields were not predictable from a stoichiometry, which used volatile fatty acid proportions in rumen fluid. Mean methane emission rates across all diets were equivalent to 8.6–13.4% of digestible energy intake, and 5.0–7.2% of gross energy intake. The latter values are comparable to IPCC (2006) recommendations (5.5–7.5%) for large ruminants fed low-quality crop residues and by-products. Methane yields per unit of ingested dry matter or digested organic matter were variable across diets but were related to digestibility and contents of fibre and protein. These results constitute a significant downward revision of the methane emissions attributable to the northern Australian beef herd grazing tropical pastures.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Avijit Dey ◽  
Shyam Sundar Paul ◽  
Puran Chand Lailer ◽  
Satbir Singh Dahiya

AbstractEnteric methane production contributes significantly to the greenhouse gas emission globally. Although, buffaloes are integral part of livestock production in Asian countries, contributing milk, meat and draft power, the contribution of enteric methane to environmental pollution attracts attention. The present study investigated the efficacy of garlic (Allium sativum) oil in reducing enteric methane production from buffaloes (Bubalus bubalis) by in vitro rumen fermentation. Garlic oil (GOL) was tested at four concentrations [0 (Control), 33.33 µl (GOL-1), 83.33 µl (GOL-2) and 166.66 µl (GOL-3) per litre of buffered rumen fluid] in 100-ml graduated glass syringes and incubated at 39℃ for 24 h for in vitro rumen fermentation study. Supplementation of GOL-1 increased (p < 0.05) total gas production in comparison with GOL-3; however, it remained comparable (p > 0.05) with control and GOL-2. Graded doses of garlic oil inclusions reduced (p < 0.001) methane concentration (%) in total gas and total methane production (ml/g DM), irrespective of concentrations. The feed degradability, volatile fatty acids and microbial biomass production (MBP) were not affected (p > 0.05) by GOL-1, but these tended to decrease in GOL-2 with marked reduction (p < 0.01) in GOL-3. The decrease (p < 0.01) in NH3–N concentration in fermentation fluid in the presence of garlic oil, irrespective of concentration, suggests reduced deamination by inhibiting rumen proteolytic bacterial population. The activities of ruminal fibrolytic enzymes (CMCase, xylanase, β-glucosidase, acetyl esterase) were not affected by lower dose (GOL-1) of garlic oil; however, reduction (p < 0.05) of these enzymes activity in rumen liquor was evident at higher doses (GOL-2 and GOL-3) of supplementation. This study shows positive impact of garlic oil supplementation at low dose (33.33 µl/l of rumen fluid) in reducing enteric methane production, thereby, abatement of environmental pollution without affecting feed digestibility.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 220-220
Author(s):  
Bobwealth O Omontese ◽  
Ashok K Sharma ◽  
Jason Langlie ◽  
Joe Armstrong ◽  
Alfredo DiCostanzo ◽  
...  

Abstract Backgrounding (BKG) segment in beef production systems is characterized by utilization of different forages which affect growth performance and carcass characteristics. However, it is unclear how BKG systems impact rumen microbiome. We investigated rumen microbiome dynamics of beef calves under different BKG systems. At weaning, Angus and Angus x Simmental beef calves (n = 38) were stratified by age, weight, and sex in a completely randomized design into 1 of 3 BKG treatments for 55 d: 1) perennial pasture (PP; quackgrass, orchardgrass; smooth bromegrass, red clover, and alfalfa); 2) summer annual cover crop (CC; cereal oats, purple top turnips, hunter forage brassica, and graza forage radish); and 3) dry lot (DL; haylage, corn, and DDGS). After BKG, all calves were assigned to a high energy ration in a feedlot. Rumen sample was collected via esophageal tubing at weaning, BKG and feedlot. A total of 190 rumen fluid samples were used to sequence the hypervariable V4 region of the 16S rRNA bacterial gene on an Illumina MiSeq platform. The results showed that BKG systems largely influenced rumen bacterial communities. Specifically, microbiome composition and diversity were not different at weaning, diverged significantly during BKG (Shannon index, Bray Curtis distance metrics; P &lt; 0.001) and homogenized during feedlot. During the BKG segment, the bacterial genera Agrobacterium, Coprococcus, and Ruminococcus were dominant in CC whereas Fibrobacteraceae and Mycoplasmataceae was most dominant in DL. Moreover, rumen microbiome patterns of CC and DL calves showed increased plasticity in early stages of development but not during feedlot with PP showing fewer changes over time. These results indicate that BKG systems significantly modulate the rumen microbiome of beef cattle and, underscore the importance of early developmental stages as potential targets for feeding interventions that can impact the animal microbiome to enhance animal performance.


Sign in / Sign up

Export Citation Format

Share Document