scholarly journals Proteolytic cleavage of HLA class II by human neutrophil elastase in pneumococcal pneumonia

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hisanori Domon ◽  
Tomoki Maekawa ◽  
Toshihito Isono ◽  
Kazuyuki Furuta ◽  
Chikara Kaito ◽  
...  

AbstractBacterial and viral respiratory infections can initiate acute lung injury and acute respiratory distress syndrome. Neutrophils and their granule enzymes, including neutrophil elastase, are key mediators of the pathophysiology of acute respiratory failure. Although intracellular neutrophil elastase functions as a host defensive factor against pathogens, its leakage into airway spaces induces degradation of host connective tissue components. This leakage disrupts host innate immune responses via proteolytic cleavage of Toll-like receptors and cytokines. Here, we investigated whether neutrophils possess proteases that cleave adaptive immune molecules. We found that expression of the human leukocyte antigen (HLA) class II molecule HLA-DP β1 was decreased in THP-1-derived macrophages treated with supernatants from dead neutrophils. This decreased HLA-DP β1 expression was counteracted by treatment with neutrophil elastase inhibitor, suggesting proteolytic cleavage of HLA-DP β1 by neutrophil elastase. SDS-PAGE showed that neutrophil elastase cleaved recombinant HLA-DP α1, -DP β1, -DQ α1, -DQ β1, -DR α, and -DR β1. Neutrophil elastase also cleaved HLA-DP β1 on extracellular vesicles isolated from macrophages without triggering morphological changes. Thus, leakage of neutrophil elastase may disrupt innate immune responses, antigen presentation, and T cell activation. Additionally, inhibition of neutrophil elastase is a potential therapeutic option for treating bacterial and viral pneumonia.

2011 ◽  
Vol 12 (5) ◽  
pp. 416-424 ◽  
Author(s):  
Xingguang Liu ◽  
Zhenzhen Zhan ◽  
Dong Li ◽  
Li Xu ◽  
Feng Ma ◽  
...  

2009 ◽  
Vol 131 ◽  
pp. S13
Author(s):  
Thomas Prod'homme ◽  
Shigeru Oshima ◽  
Patricia Nelson ◽  
Juan Carlos Patarroyo ◽  
Averil Ma ◽  
...  

2006 ◽  
Vol 34 (2) ◽  
pp. 279-282 ◽  
Author(s):  
P.M. Fitch ◽  
A. Roghanian ◽  
S.E.M. Howie ◽  
J.-M. Sallenave

Recent evidence shows that human neutrophil elastase inhibitors can be synthesized locally at mucosal sites. In addition to efficiently targeting bacterial and host enzymes, they can be released in the interstitium and in the lumen of mucosa, where they have been shown to have antimicrobial activities, and to activate innate immune responses. This review will address more particularly the pleiotropic functions of low-molecular-mass neutrophil elastase inhibitors [SLPI (secretory leucocyte proteinase inhibitor) and elafin] and, more specifically, their role in the development of the adaptive immune response.


Author(s):  
Kensuke Miyake ◽  
Shin-ichiroh Saitoh ◽  
Ryutaro Fukui ◽  
Takuma Shibata ◽  
Ryota Sato ◽  
...  

Abstract Nucleic acid (NA)-sensing Toll-like receptors (TLRs) are synthesized in the endoplasmic reticulum and mature with chaperones, such as Unc93B1 and the protein associated with TLR4 A (PRAT4A)–gp96 complex. The TLR–Unc93B1 complexes move to the endosomal compartment, where proteases such as cathepsins activate their responsiveness through proteolytic cleavage of the extracellular domain of TLRs. Without proteolytic cleavage, ligand-dependent dimerization of NA-sensing TLRs is prevented by the uncleaved loop in the extracellular domains. Additionally, the association of Unc93B1 inhibits ligand-dependent dimerization of TLR3 and TLR9 and, therefore, Unc93B1 is released from these TLRs before dimerization. Ligand-activated NA-sensing TLRs induce the production of proinflammatory cytokines and act on the endosomal compartment to initiate anterograde trafficking to the cell periphery for type I interferon production. In the endosomal compartment, DNA and RNA are degraded by DNases and RNases, respectively, generating degradation products. DNase 2A and RNase T2 generate ligands for TLR9 and TLR8, respectively. In this mechanism, DNases and RNases control innate immune responses to NAs in endosomal compartments. NA-sensing TLRs and the endosomal compartment work together to monitor environmental cues through endosomes and decide to launch innate immune responses.


PLoS ONE ◽  
2010 ◽  
Vol 5 (1) ◽  
pp. e8808 ◽  
Author(s):  
Remo Frei ◽  
Johanna Steinle ◽  
Thomas Birchler ◽  
Susanne Loeliger ◽  
Caroline Roduit ◽  
...  

Glia ◽  
2019 ◽  
Vol 67 (6) ◽  
pp. 1179-1195 ◽  
Author(s):  
Chi Young Chang ◽  
Sae‐Bom Jeon ◽  
Hee Jung Yoon ◽  
Bum‐Kyu Choi ◽  
Sang Soo Kim ◽  
...  

2003 ◽  
Vol 71 (7) ◽  
pp. 3766-3774 ◽  
Author(s):  
J.-M. Sallenave ◽  
G. A. Cunningham ◽  
R. M. James ◽  
G. McLachlan ◽  
C. Haslett

ABSTRACT The control of lung inflammation is of paramount importance in a variety of acute pathologies, such as pneumonia, the acute respiratory distress syndrome, and sepsis. It is becoming increasingly apparent that local innate immune responses in the lung are negatively influenced by systemic inflammation. This is thought to be due to a local deficit in cytokine responses by alveolar macrophages and neutrophils following systemic bacterial infection and the development of a septic response. Recently, using an adenovirus-based strategy which overexpresses the human elastase inhibitor elafin locally in the lung, we showed that elafin is able to prime lung innate immune responses. In this study, we generated a novel transgenic mouse strain expressing human elafin and studied its response to bacterial lipopolysaccharide (LPS) when the LPS was administered locally in the lungs and systemically. When LPS was delivered to the lungs, we found that mice expressing elafin had lower serum-to-bronchoalveolar lavage ratios of proinflammatory cytokines, including tumor necrosis factor alpha (TNF-α), macrophage inflammatory protein 2, and monocyte chemoattractant protein 1, than wild-type mice. There was a concomitant increase in inflammatory cell influx, showing that there was potential priming of innate responses in the lungs. When LPS was given systemically, the mice expressing elafin had reduced levels of serum TNF-α compared to the levels in wild-type mice. These results indicate that elafin may have a dual function, promoting up-regulation of local lung innate immunity while simultaneously down-regulating potentially unwanted systemic inflammatory responses in the circulation.


2015 ◽  
Vol 29 (3) ◽  
pp. 119-129 ◽  
Author(s):  
Richard J. Stevenson ◽  
Deborah Hodgson ◽  
Megan J. Oaten ◽  
Luba Sominsky ◽  
Mehmet Mahmut ◽  
...  

Abstract. Both disgust and disease-related images appear able to induce an innate immune response but it is unclear whether these effects are independent or rely upon a common shared factor (e.g., disgust or disease-related cognitions). In this study we directly compared these two inductions using specifically generated sets of images. One set was disease-related but evoked little disgust, while the other set was disgust evoking but with less disease-relatedness. These two image sets were then compared to a third set, a negative control condition. Using a wholly within-subject design, participants viewed one image set per week, and provided saliva samples, before and after each viewing occasion, which were later analyzed for innate immune markers. We found that both the disease related and disgust images, relative to the negative control images, were not able to generate an innate immune response. However, secondary analyses revealed innate immune responses in participants with greater propensity to feel disgust following exposure to disease-related and disgusting images. These findings suggest that disgust images relatively free of disease-related themes, and disease-related images relatively free of disgust may be suboptimal cues for generating an innate immune response. Not only may this explain why disgust propensity mediates these effects, it may also imply a common pathway.


2014 ◽  
Vol 9 (S 01) ◽  
Author(s):  
MP Ashton ◽  
I Tan ◽  
L Mackin ◽  
C Elso ◽  
E Chu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document