scholarly journals Salicylic acid is a key player of Arabidopsis autophagy mutant susceptibility to the necrotrophic bacterium Dickeya dadantii

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Martine Rigault ◽  
Sylvie Citerne ◽  
Céline Masclaux-Daubresse ◽  
Alia Dellagi

AbstractAutophagy is a ubiquitous vesicular process for protein and organelle recycling in eukaryotes. In plant, autophagy is reported to play pivotal roles in nutrient recycling, adaptation to biotic and abiotic stresses. The role of autophagy in plant immunity remains poorly understood. Several reports showed enhanced susceptibility of different Arabidopsis autophagy mutants (atg) to necrotrophic fungal pathogens. Interaction of necrotrophic bacterial pathogens with autophagy is overlooked. We then investigated such interaction by inoculating the necrotrophic enterobacterium Dickeya dadantii in leaves of the atg2 and atg5 mutants and an ATG8a overexpressing line. Overexpressing ATG8a enhances plant tolerance to D. dadantii. While atg5 mutant displayed similar susceptibility to the WT, the atg2 mutant exhibited accelerated leaf senescence and enhanced susceptibility upon infection. Both phenotypes were reversed when the sid2 mutation, abolishing SA signaling, was introduced in the atg2 mutant. High levels of SA signaling in atg2 mutant resulted in repression of the jasmonic acid (JA) defense pathway known to limit D. dadantii progression in A. thaliana. We provide evidence that in atg2 mutant, the disturbed hormonal balance leading to higher SA signaling is the main factor causing increased susceptibility to the D. dadantii necrotroph by repressing the JA pathway and accelerating developmental senescence.

Author(s):  
Viviana Escudero ◽  
Darío Ferreira Sánchez ◽  
Isidro Abreu ◽  
Sara Sopeña-Torres ◽  
Natalia Makarovsky-Saavedra ◽  
...  

Abstract Zinc is an essential nutrient at low concentrations, but toxic at slightly higher ones. It has been proposed that hyperaccumulator plants may use the excess zinc to fend off pathogens and herbivores. However, there is little evidence of a similar response in other plants. Here we show that Arabidopsis thaliana leaves inoculated with the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM) accumulate zinc and manganese at the infection site. Zinc accumulation did not occur in a double mutant in the zinc transporters HEAVY METAL ATPASE2 and HEAVY METAL ATPASE4 (HMA2 and HMA4), which has reduced zinc translocation from roots to shoots. Consistent with a role in plant immunity, expression of HMA2 and HMA4 was up-regulated upon PcBMM inoculation, and hma2hma4 mutants were more susceptible to PcBMM infection. This phenotype was rescued upon zinc supplementation. The increased susceptibility to PcBMM infection was not due to the diminished expression of genes involved in the salicylic acid, ethylene, or jasmonate pathways since they were constitutively up-regulated in hma2hma4 plants. Our data indicate a role of zinc in resistance to PcBMM in plants containing ordinary levels of zinc. This layer of immunity runs in parallel to the already characterized defence pathways, and its removal has a direct effect on resistance to pathogens.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Seongbeom Kim ◽  
Chi-Yeol Kim ◽  
Sook-Young Park ◽  
Ki-Tae Kim ◽  
Jongbum Jeon ◽  
...  

AbstractPathogens utilize multiple types of effectors to modulate plant immunity. Although many apoplastic and cytoplasmic effectors have been reported, nuclear effectors have not been well characterized in fungal pathogens. Here, we characterize two nuclear effectors of the rice blast pathogen Magnaporthe oryzae. Both nuclear effectors are secreted via the biotrophic interfacial complex, translocated into the nuclei of initially penetrated and surrounding cells, and reprogram the expression of immunity-associated genes by binding on effector binding elements in rice. Their expression in transgenic rice causes ambivalent immunity: increased susceptibility to M. oryzae and Xanthomonas oryzae pv. oryzae, hemibiotrophic pathogens, but enhanced resistance to Cochliobolus miyabeanus, a necrotrophic pathogen. Our findings help remedy a significant knowledge deficiency in the mechanism of M. oryzae–rice interactions and underscore how effector-mediated manipulation of plant immunity by one pathogen may also affect the disease severity by other pathogens.


Author(s):  
Javad Najafi ◽  
Tore Brembu ◽  
Ane Kjersti Vie ◽  
Rannveig Viste ◽  
Per Winge ◽  
...  

Abstract Small post-translationally modified peptides are important signalling components of plant defence responses against phytopathogens, acting both as positive and negative modulators. PAMP-INDUCED SECRETED PEPTIDE (PIP) 1 and 2 has been shown to amplify plant immunity. Here we investigate the role of the related peptide PIP3 in the regulation of immune response in Arabidopsis. Treatment with synthetic PIP peptides led to similar transcriptome reprogramming, indicating an effect on innate immunity-related processes and phytohormones, including jasmonic acid (JA) biosynthesis and signalling. PIP3 overexpressing (OX) plants showed enhanced growth inhibition in response to flg22 exposure. In addition, flg22-induced production of reactive oxygen species and callose deposition were significantly reduced in PIP3-OX plants. Interestingly, PIP3-OX plants showed increased susceptibility both toward Botrytis cinerea and the biotrophic pathogen Pseudomonas syringae. Expression of both JA and salicylic acid biosynthesis and signalling genes was more induced during B. cinerea infection in PIP3-OX plants compared with wild-type plants. Promoter and ChIP-seq analyses indicated that the transcription factors WRKY18, WRKY33 and WRKY40 cooperatively act as repressors for PIP3. The results point to a fine-tuning role for PIP3 in modulation of immunity through the regulation of SA and JA biosynthesis and signalling pathways in Arabidopsis.


Acta Naturae ◽  
2016 ◽  
Vol 8 (2) ◽  
pp. 79-86 ◽  
Author(s):  
P. V. Elizar’ev ◽  
D. V. Lomaev ◽  
D. A. Chetverina ◽  
P. G. Georgiev ◽  
M. M. Erokhin

Maintenance of the individual patterns of gene expression in different cell types is required for the differentiation and development of multicellular organisms. Expression of many genes is controlled by Polycomb (PcG) and Trithorax (TrxG) group proteins that act through association with chromatin. PcG/TrxG are assembled on the DNA sequences termed PREs (Polycomb Response Elements), the activity of which can be modulated and switched from repression to activation. In this study, we analyzed the influence of transcriptional read-through on PRE activity switch mediated by the yeast activator GAL4. We show that a transcription terminator inserted between the promoter and PRE doesnt prevent switching of PRE activity from repression to activation. We demonstrate that, independently of PRE orientation, high levels of transcription fail to dislodge PcG/TrxG proteins from PRE in the absence of a terminator. Thus, transcription is not the main factor required for PRE activity switch.


2003 ◽  
Vol 14 (04) ◽  
pp. 202-212 ◽  
Author(s):  
Michael J. Cevette ◽  
Jürgen Vormann ◽  
Kay Franz

The last several decades have revealed clinical and experimental data regarding the importance of magnesium (Mg) in hearing. Increased susceptibility to noise damage, ototoxicity, and auditory hyperexcitibility are linked to states of Mg deficiency. Evidence for these processes has come slowly and direct effects have remained elusive because plasma Mg levels do not always correlate with its deficiency. Despite the major progress in the understanding of cochlear mechanical and auditory nerve function, the neurochemical and pharmacologic role of Mg is not clear. The putative mechanism suggests that Mg deficiency may contribute to a metabolic cellular cascade of events. Mg deficiency leads to an increased permeability of the calcium channel in the hair cells with a consequent over influx of calcium, an increased release of glutamate via exocytosis, and over stimulation of NMDA receptors on the auditory nerve. This paper provides a current overview of relevant Mg metabolism and deficiency and its influence on hearing.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 802
Author(s):  
Pierluigi Reveglia ◽  
Regina Billones-Baaijens ◽  
Jennifer Millera Millera Niem ◽  
Marco Masi ◽  
Alessio Cimmino ◽  
...  

Grapevine trunk diseases (GTDs) are considered a serious problem to viticulture worldwide. Several GTD fungal pathogens produce phytotoxic metabolites (PMs) that were hypothesized to migrate to the foliage where they cause distinct symptoms. The role of PMs in the expression of Botryosphaeria dieback (BD) symptoms in naturally infected and artificially inoculated wood using molecular and analytical chemistry techniques was investigated. Wood samples from field vines naturally infected with BD and one-year-old vines inoculated with Diplodia seriata, Spencermartinsia viticola and Dothiorella vidmadera were analysed by cultural isolations, quantitative PCR (qPCR) and targeted LC-MS/MS to detect three PMs: (R)-mellein, protocatechuic acid and spencertoxin. (R)-mellein was detected in symptomatic naturally infected wood and vines artificially inoculated with D. seriata but was absent in all non-symptomatic wood. The amount of (R)-mellein detected was correlated with the amount of pathogen DNA detected by qPCR. Protocatechuic acid and spencertoxin were absent in all inoculated wood samples. (R)-mellein may be produced by the pathogen during infection to break down the wood, however it was not translocated into other parts of the vine. The foliar symptoms previously reported in vineyards may be due to a combination of PMs produced and climatic and physiological factors that require further investigation.


2021 ◽  
Vol 22 (11) ◽  
pp. 5713
Author(s):  
Yiping Zhang ◽  
Li Zhang ◽  
Hai Ma ◽  
Yichu Zhang ◽  
Xiuming Zhang ◽  
...  

APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play important roles in plant development and stress response. Although AP2/ERF genes have been extensively investigated in model plants such as Arabidopsis thaliana, little is known about their role in biotic stress response in perennial fruit tree crops such as apple (Malus × domestica). Here, we investigated the role of MdERF100 in powdery mildew resistance in apple. MdERF100 localized to the nucleus but showed no transcriptional activation activity. The heterologous expression of MdERF100 in Arabidopsis not only enhanced powdery mildew resistance but also increased reactive oxygen species (ROS) accumulation and cell death. Furthermore, MdERF100-overexpressing Arabidopsis plants exhibited differential expressions of genes involved in jasmonic acid (JA) and salicylic acid (SA) signaling when infected with the powdery mildew pathogen. Additionally, yeast two-hybrid and bimolecular fluorescence complementation assays confirmed that MdERF100 physically interacts with the basic helix–loop–helix (bHLH) protein MdbHLH92. These results suggest that MdERF100 mediates powdery mildew resistance by regulating the JA and SA signaling pathways, and MdbHLH92 is involved in plant defense against powdery mildew. Overall, this study enhances our understanding of the role of MdERF genes in disease resistance, and provides novel insights into the molecular mechanisms of powdery mildew resistance in apple.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 979
Author(s):  
Alaitz Zabala ◽  
Lander Galdos ◽  
Chris Childs ◽  
Iñigo Llavori ◽  
Andrea Aginagalde ◽  
...  

The increasing demands for lightweight design in the transport industry have led to an extensive use of lightweight materials such as aluminium alloys. The forming of aluminium sheets however presents significant challenges due to the low formability and the increased susceptibility to galling. The use of tailored workpieces and controlled die roughness surfaces are common strategies to improve the tribological behaviour, whilst galling is still not well understood. This work is aimed at analysing the interplay between the sheet and tool surface roughness on the friction and galling performance. Different degrees of Electro Discharge Texturing (EDT) textures were generated in AA1050 material strips, and tooling presenting different polishing degrees were prepared. Strip drawing tests were carried out to model the tribological condition and results were corroborated through cup drawing tests. A new galling severity index (GSI) is presented for a quick and quantitative determination of both galling occurrence and severity. The present study underlines the key role of die topography and the potential of die surface functionalization for galling prevention.


Dose-Response ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 155932582097924
Author(s):  
Darya Babina ◽  
Marina Podobed ◽  
Ekaterina Bondarenko ◽  
Elizaveta Kazakova ◽  
Sofia Bitarishvili ◽  
...  

Plant growth response to γ-irradiation includes stimulating or inhibitory effects depending on plant species, dose applied, stage of ontogeny and other factors. Previous studies showed that responses to irradiation could depend on ABA accumulation and signaling. To elucidate the role of ABA in growth and photosynthetic responses to irradiation, lines Col-8, abi3-8 and aba3 -1 of Arabidopsis thaliana were used. Seeds were γ-irradiated using 60Co in the dose range 50-150 Gy. It was revealed that the dose of 150 Gy affected germination parameters of aba3 -1 and Col-8 lines, while abi3-8 line was the most resistant to the studied doses and even showed faster germination at early hours after γ-irradiation at 50 Gy. These results suggest that susceptibility to ABA is probably more important for growth response to γ-irradiation than ABA synthesis. The photosynthetic functioning of 16-day-old plants mainly was not disturbed by γ-irradiation of seeds, and no indication of photosystem II photoinhibition was noticed, revealing the robustness of the photosynthetic system of A. thaliana. Glutathione peroxidase activity and ABA concentrations in plant tissues were not affected in the studied dose range. These results contribute to the understanding of germination and photosynthesis fine-tuning and of mechanisms of plant tolerance to ionizing radiation.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 302
Author(s):  
Fritzlaine C. Roche ◽  
Tamia A. Harris-Tryon

Vitamin A is a fat-soluble vitamin that plays an important role in skin immunity. Deficiencies in Vitamin A have been linked to impaired immune response and increased susceptibility to skin infections and inflammatory skin disease. This narrative review summarizes recent primary evidence that elucidates the role of vitamin A and its derivatives on innate immune regulators through mechanisms that promote skin immunity and sustain the skin microbiome.


Sign in / Sign up

Export Citation Format

Share Document