scholarly journals Integrated whole transcriptome and small RNA analysis revealed multiple regulatory networks in colorectal cancer

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hibah Shaath ◽  
Salman M. Toor ◽  
Mohamed Abu Nada ◽  
Eyad Elkord ◽  
Nehad M. Alajez

AbstractColorectal cancer (CRC) remains a global disease burden and a leading cause of cancer related deaths worldwide. The identification of aberrantly expressed messenger RNA (mRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), and the resulting molecular interactions and signaling networks is essential for better understanding of CRC, identification of novel diagnostic biomarkers and potential development of therapeutic interventions. Herein, we performed microRNA (miRNA) sequencing on fifteen CRC and their non-tumor adjacent tissues and whole transcriptome RNA-Seq on six paired samples from the same cohort and identified alterations in miRNA, mRNA, and lncRNA expression. Computational analyses using Ingenuity Pathway Analysis (IPA) identified multiple activated signaling networks in CRC, including ERBB2, RABL6, FOXM1, and NFKB networks, while functional annotation highlighted activation of cell proliferation and migration as the hallmark of CRC. IPA in combination with in silico prediction algorithms and experimentally validated databases gave insight into the complex associations and interactions between downregulated miRNAs and upregulated mRNAs in CRC and vice versa. Additionally, potential interaction between differentially expressed lncRNAs such as H19, SNHG5, and GATA2-AS1 with multiple miRNAs has been revealed. Taken together, our data provides thorough analysis of dysregulated protein-coding and non-coding RNAs in CRC highlighting numerous associations and regulatory networks thus providing better understanding of CRC.

2020 ◽  
Author(s):  
Fei Yao ◽  
Chuanren Zhou ◽  
Qiyou Huang ◽  
Xiaoying Huang ◽  
Jie Chen ◽  
...  

Abstract Background: Chemo-resistance is a major clinical obstacle to the treatment of colorectal cancer (CRC), mRNAs and non-coding RNAs (ncRNAs) have been reported to modulate the development of chemo-resistance. However, the profiles of mRNAs and ncRNAs as well as competing endogenous RNA (ceRNA) networks in CRC chemo-resistance are still unclear, and whether different drug resistance of CRC have the same mechanisms also needs to be explored. This study aims to uncover the expression of mRNAs and ncRNAs in parental cell lines and different chemo-resistant cell lines, and construct ceRNA regulatory networks by whole-transcriptome sequencing.Methods: The expression of mRNAs and ncRNAs in parental cell lines and drug-resistant cell lines were identified by whole-transcriptome sequencing and bioinformatics methods.Results: A total of 1779 mRNAs, 64 miRNAs, 11 circRNAs and 295 lncRNAs were common differentially expressed in two different chemo-resistant cell lines when compared with the control. In addition, 5,767 lncRNA-miRNA-mRNA relationship pairs and 47 circRNA-miRNA-mRNA pathways were constructed according to ceRNA regulatory rules, in which AC109322.2-hsa-miR-371a-5p-BTNL3 and hsacirc_027876-hsa-miR-582-3p-FREM1 were identified as the most potential ceRNA networks involved in drug resistance to CRC. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of two ceRNA regulatory networks showed that the TNF signaling pathway may be crucial in the process of CRC drug resistance.Conclusions: A large number of mRNAs and ncRNAs in chemo-resistant cell lines were different expressed, which may play pivotal roles in development of drug resistance through the ceRNA regulatory network. This study may improve our understanding of the underlying mechanisms and provide a promising therapeutic strategy for CRC chemo-resistance.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Umberto Rosani ◽  
Miriam Abbadi ◽  
Timothy Green ◽  
Chang-Ming Bai ◽  
Edoardo Turolla ◽  
...  

Abstract Background Since 2008, the aquaculture production of Crassostrea gigas was heavily affected by mass mortalities associated to Ostreid herpesvirus 1 (OsHV-1) microvariants worldwide. Transcriptomic studies revealed the major antiviral pathways of the oyster immune response while other findings suggested that also small non-coding RNAs (sncRNA) such as microRNAs might act as key regulators of the oyster response against OsHV-1. To explore the explicit connection between small non-coding and protein-coding transcripts, we performed paired whole transcriptome analysis of sncRNA and messenger RNA (mRNA) in six oysters selected for different intensities of OsHV-1 infection. Results The mRNA profiles of the naturally infected oysters were mostly governed by the transcriptional activity of OsHV-1, with several differentially expressed genes mapping to the interferon, toll, apoptosis, and pro-PO pathways. In contrast, miRNA profiles suggested more complex regulatory mechanisms, with 15 differentially expressed miRNAs (DE-miRNA) pointing to a possible modulation of the host response during OsHV-1 infection. We predicted 68 interactions between DE-miRNAs and oyster 3′-UTRs, but only few of them involved antiviral genes. The sncRNA reads assigned to OsHV-1 rather resembled mRNA degradation products, suggesting the absence of genuine viral miRNAs. Conclusions We provided data describing the miRNAome during OsHV-1 infection in C. gigas. This information can be used to understand the role of miRNAs in healthy and diseased oysters, to identify new targets for functional studies and, eventually to disentangle cause and effect relationships during viral infections in marine mollusks.


2019 ◽  
Author(s):  
Xiao Ma ◽  
Shuangshuang Cen ◽  
Luming Wang ◽  
Chao Zhang ◽  
Limin Wu ◽  
...  

Abstract Abstract Background: Gonad is the major factor affecting the animal reproduction. The regulation mechanism of protein coding genes expression involved reproduction is still remains to be elucidated. Increasing evidence has shown that ncRNAs play key regulatory roles in gene expression in many life processes. The roles of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in reproduction had been investigated in some species. However, the regulation patterns of miRNA and lncRNA in sex biased expression of protein coding genes remains to be elucidated. In this study, we performed an integrated analysis of miRNA, messenger RNA (mRNA), and lncRNA expression profiles to explore their regulatory patterns in the female ovary and male testis of the soft-shelled turtle, Pelodiscus sinensis. Results: We identified 10 796 mature miRNAs, 44 678 mRNAs, and 58 923 lncRNAs in the testis and ovary. A total of 16 817 target genes were identified for miRNAs. Of these, 11 319 mRNAs, 10 495 lncRNAs, and 633 miRNAs were expressed differently. The predicted target genes of these differential expression (DE) miRNAs and lncRNAs included genes related to reproduction regulation. Furthermore, we found that 5 408 DElncRNAs and 186 DE miRNAs showed sex-specific expression. Of these, 3 miRNAs and 917 lncRNAs were testis specific and 186 DEmiRNAs and 4 491 DElncRNAs were ovary specific. We constructed compete endogenous lncRNA-miRNA-mRNA networks using bioinformatics, including 273 DEmRNAs, 5 730 DEmiRNAs, and 2 945 DElncRNAs. The target genes for the different expressed of miRNAs and lncRNAs included Wt1, Creb3l2, Gata4, Wnt2, Nr5a1, Hsd17, Igf2r, H2afz, Lin52, Trim71, Zar1, and Jazf1, etc. Conclusions: In animals, miRNA and lncRNA regulate the reproduction process, including the regulation of oocyte maturation and spermatogenesis. Considering their importance, the identified miRNAs, lncRNAs, and their targets in P. sinensis might be useful for genome editing to produce higher quality aquaculture animals. A thorough understanding of ncRNA-based cellular regulatory networks will aid in the improvement of P. sinensis reproduction traits for aquaculture.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Peiwen Xiong ◽  
Ralf F. Schneider ◽  
C. Darrin Hulsey ◽  
Axel Meyer ◽  
Paolo Franchini

Abstract MicroRNAs (miRNAs) play crucial roles in the post-transcriptional control of messenger RNA (mRNA). These miRNA-mRNA regulatory networks are present in nearly all organisms and contribute to development, phenotypic divergence, and speciation. To examine the miRNA landscape of cichlid fishes, one of the most species-rich families of vertebrates, we profiled the expression of both miRNA and mRNA in a diverse set of cichlid lineages. Among these, we found that conserved miRNAs differ from recently arisen miRNAs (i.e. lineage specific) in average expression levels, number of target sites, sequence variability, and physical clustering patterns in the genome. Furthermore, conserved miRNA target sites tend to be enriched at the 5′ end of protein-coding gene 3′ UTRs. Consistent with the presumed regulatory role of miRNAs, we detected more negative correlations between the expression of miRNA-mRNA functional pairs than in random pairings. Finally, we provide evidence that novel miRNA targets sites are enriched in genes involved in protein synthesis pathways. Our results show how conserved and evolutionarily novel miRNAs differ in their contribution to the genomic landscape and highlight their particular evolutionary roles in the adaptive diversification of cichlids.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ankita Sharma ◽  
Rafeeq Mir ◽  
Sanjeev Galande

Studies over the past four decades have elucidated the role of Wnt/β-catenin mediated regulation in cell proliferation, differentiation and migration. These processes are fundamental to embryonic development, regeneration potential of tissues, as well as cancer initiation and progression. In this review, we focus on the epigenetic players which influence the Wnt/β-catenin pathway via modulation of its components and coordinated regulation of the Wnt target genes. The role played by crosstalk with other signaling pathways mediating tumorigenesis is also elaborated. The Hippo/YAP pathway is particularly emphasized due to its extensive crosstalk via the Wnt destruction complex. Further, we highlight the recent advances in developing potential therapeutic interventions targeting the epigenetic machinery based on the characterization of these regulatory networks for effective treatment of various cancers and also for regenerative therapies.


2020 ◽  
Vol 26 (15) ◽  
pp. 1729-1741 ◽  
Author(s):  
Seyed H. Shahcheraghi ◽  
Venant Tchokonte-Nana ◽  
Marzieh Lotfi ◽  
Malihe Lotfi ◽  
Ahmad Ghorbani ◽  
...  

: Glioblastoma (GBM) is the most common and malignant astrocytic glioma, accounting for about 90% of all brain tumors with poor prognosis. Despite recent advances in understanding molecular mechanisms of oncogenesis and the improved neuroimaging technologies, surgery, and adjuvant treatments, the clinical prognosis of patients with GBM remains persistently unfavorable. The signaling pathways and the regulation of growth factors of glioblastoma cells are very abnormal. The various signaling pathways have been suggested to be involved in cellular proliferation, invasion, and glioma metastasis. The Wnt signaling pathway with its pleiotropic functions in neurogenesis and stem cell proliferation is implicated in various human cancers, including glioma. In addition, the PI3K/Akt/mTOR pathway is closely related to growth, metabolism, survival, angiogenesis, autophagy, and chemotherapy resistance of GBM. Understanding the mechanisms of GBM’s invasion, represented by invasion and migration, is an important tool in designing effective therapeutic interventions. This review will investigate two main signaling pathways in GBM: PI3K/Akt/mTOR and Wnt/beta-catenin signaling pathways.


2020 ◽  
Vol 117 (12) ◽  
pp. 6540-6549
Author(s):  
Urban Bezeljak ◽  
Hrushikesh Loya ◽  
Beata Kaczmarek ◽  
Timothy E. Saunders ◽  
Martin Loose

The eukaryotic endomembrane system is controlled by small GTPases of the Rab family, which are activated at defined times and locations in a switch-like manner. While this switch is well understood for an individual protein, how regulatory networks produce intracellular activity patterns is currently not known. Here, we combine in vitro reconstitution experiments with computational modeling to study a minimal Rab5 activation network. We find that the molecular interactions in this system give rise to a positive feedback and bistable collective switching of Rab5. Furthermore, we find that switching near the critical point is intrinsically stochastic and provide evidence that controlling the inactive population of Rab5 on the membrane can shape the network response. Notably, we demonstrate that collective switching can spread on the membrane surface as a traveling wave of Rab5 activation. Together, our findings reveal how biochemical signaling networks control vesicle trafficking pathways and how their nonequilibrium properties define the spatiotemporal organization of the cell.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Zhang ◽  
Zhaohui Zhong ◽  
Mei Li ◽  
Jingyi Chen ◽  
Tingru Lin ◽  
...  

AbstractAbnormally expressed and/or phosphorylated Abelson interactor 1 (ABI1) participates in the metastasis and progression of colorectal cancer (CRC). ABI1 presents as at least 12 transcript variants (TSVs) by mRNA alternative splicing, but it is unknown which of them is involved in CRC metastasis and prognosis. Here, we firstly identified ABI1-TSV-11 as a key TSV affecting the metastasis and prognosis of left-sided colorectal cancer (LsCC) and its elevated expression is related to lymph node metastasis and shorter overall survival (OS) in LsCC by analyzing data from The Cancer Genome Atlas and TSVdb. Secondly, ABI1-TSV-11 overexpression promoted LoVo and SW480 cells adhesion and migration in vitro, and accelerated LoVo and SW480 cells lung metastasis in vivo. Finally, mechanism investigations revealed that ABI1-isoform-11 interacted with epidermal growth factor receptor pathway substrate 8 (ESP8) and regulated actin dynamics to affect LoVo and SW480 cells biological behaviors. Taken together, our data demonstrated that ABI1-TSV-11 plays an oncogenic role in LsCC, it is an independent risk factor of prognosis and may be a potential molecular marker and therapeutic target in LsCC.


Oncogene ◽  
2021 ◽  
Author(s):  
Yiyun Chen ◽  
Wing Yin Cheng ◽  
Hongyu Shi ◽  
Shengshuo Huang ◽  
Huarong Chen ◽  
...  

AbstractMolecular-based classifications of gastric cancer (GC) were recently proposed, but few of them robustly predict clinical outcomes. While mutation and expression signature of protein-coding genes were used in previous molecular subtyping methods, the noncoding genome in GC remains largely unexplored. Here, we developed the fast long-noncoding RNA analysis (FLORA) method to study RNA sequencing data of GC cases, and prioritized tumor-specific long-noncoding RNAs (lncRNAs) by integrating clinical and multi-omic data. We uncovered 1235 tumor-specific lncRNAs, based on which three subtypes were identified. The lncRNA-based subtype 3 (L3) represented a subgroup of intestinal GC with worse survival, characterized by prevalent TP53 mutations, chromatin instability, hypomethylation, and over-expression of oncogenic lncRNAs. In contrast, the lncRNA-based subtype 1 (L1) has the best survival outcome, while LINC01614 expression further segregated a subgroup of L1 cases with worse survival and increased chance of developing distal metastasis. We demonstrated that LINC01614 over-expression is an independent prognostic factor in L1 and network-based functional prediction implicated its relevance to cell migration. Over-expression and CRISPR-Cas9-guided knockout experiments further validated the functions of LINC01614 in promoting GC cell growth and migration. Altogether, we proposed a lncRNA-based molecular subtype of GC that robustly predicts patient survival and validated LINC01614 as an oncogenic lncRNA that promotes GC proliferation and migration.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ye Qian ◽  
Yan Zhang ◽  
Haoming Ji ◽  
Yucheng Shen ◽  
Liangfeng Zheng ◽  
...  

Abstract Background Lung adenocarcinoma (LUAD) is one of the most common cancers with high morbidity and mortality worldwide. Long non-coding RNAs (lncRNAs) serve as tumor promoters or suppressors in the development of various human malignancies, including LUAD. Although long intergenic non-protein coding RNA 1089 (LINC01089) suppresses the progression of breast cancer, its mechanism in LUAD requires further exploration. Thus, we aimed to investigate the underlying function and mechanism of LINC01089 in LUAD. Methods The expression of LINC01089 in LUAD and normal cell lines was detected. Functional assays were applied to measure cell proliferation, apoptosis and migration. Besides, mechanism experiments were employed for assessing the interplay among LINC01089, miR-301b-3p and StAR related lipid transfer domain containing 13 (STARD13). Data achieved in this study was statistically analyzed with Student’s t test or one-way analysis of variance. Results LINC01089 expression was significantly down-regulated in LUAD tissues and cells and its overexpression could reduce cell proliferation and migration. Moreover, LINC01089 could regulate STARD13 expression through competitively binding to miR-301b-3p in LUAD. Additionally, rescue assays uncovered that STARD13 depletion or miR-301b-3p overexpression could countervail the restraining effect of LINC01089 knockdown on the phenotypes of LUAD cells. Conclusion LINC01089 served as a tumor-inhibitor in LUAD by targeting miR-301b-3p/STARD13 axis, providing an innovative insight into LUAD therapies. Trial registration Not applicable.


Sign in / Sign up

Export Citation Format

Share Document