scholarly journals Parametric investigation of a chilled water district cooling unit using mono and hybrid nanofluids

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eric C. Okonkwo ◽  
Tareq Al-Ansari

AbstractThis study presents a novel parametric investigation into the performance of a district cooling system using mono (Al2O3 and TiO2) and hybrid (Al2O3–TiO2) nanoparticles in the base fluids of water and ethylene–glycol water (EG-water) at a 20:80 ratio. The study analyses the effect of variables such as secondary fluid flow rate, evaporator and inlet temperatures, nanoparticle concentration, and air flowrate on the COP, total electrical energy consumption, and design of the district cooling unit. The analysis is performed with a thermal model developed and validated using operations data obtained from the McQuay chilled water HVAC unit operating in one of the facility plants at the Education City campus. The results of the study show that the use of nanofluids increased the overall heat transfer coefficient in the system by 6.6% when using Al2O3–TiO2/water nanofluids. The use of nanofluids in the evaporator also led to an average reduction of 23.3% in the total work input to the system and improved the COP of the system by 21.8%, 20.8% and 21.6% for Al2O3–TiO2/water, Al2O3/water, and TiO2/water nanofluids, respectively. Finally, an enhancement of 21.6% in COP was recorded for Al2O3–TiO2/EG-water nanofluids at a 5% nanoparticle volume concentration.

2014 ◽  
Vol 592-594 ◽  
pp. 922-926 ◽  
Author(s):  
Devasenan Madhesh ◽  
S. Kalaiselvam

Analysis of heat transfer behaviour of hybrid nanofluid (HyNF) flow through the tubular heat exchanger was experimentally investigated. In this analysis the effects of thermal characteristics of forced convection, Nusselt number, Peclet number, and overall heat transfer coefficient were investigated.The nanofluid was prepared by dispersing the copper-titania hybrid nanocomposite (HyNC) in the water. The experiments were performed for various nanoparticle volume concentrations addition in the base fluid from the range of 0.1% to 1.0%. The experimental results show that the overall heat transfer coefficient was found to increases maximum by 30.4%, up to 0.7% volume concentration of HyNC.


2019 ◽  
Vol 111 ◽  
pp. 01071
Author(s):  
Adrian Retezan ◽  
Szilveszter Geyer Ehrenberg

Everyday life does involve use of cooling systems for different areas and scenarios. We use them to keep our thermal comfort level at optimum, either to get rid of some extra heat from technological systems. From various cooling solutions, one and very common system is the chilled water system, where centralised chiller plants produce the cooling energy and all terminal units do receive cooling energy using a distribution loop. According to statistical data, electrical energy consumption of pumps might be up to 17% of entire electrical use of the cooling plant. When designing our cooling system loads during operation will not be same all the time. Variation must be treated accordingly, therefore to get best efficiency of the system, we must get a good control. Beside shut-off motorised valves our balancing must be considered in different scenarios. The paper looks to summarize the challenges in getting a good balancing and energy efficiency in chilled water distribution system.


Now a days Air conditioning system has become a need for everyone to feel comfort in hot and humid condition and everyone feels comfortable to drink chilled water for quenching the thirst of the people. According to American Society of Heating, Refrigerating and Air conditioning Engineers in short ASHRAE Human comfort is defined as the condition of mind which expresses satisfaction with surrounding air. In this project, we developed the water cooling refrigerator and air cooling system by combining both the systems through which water is chilled by an eco-friendly refrigerant R-134a and then the air is cooled by this chilled water. Performance analysis of the water cooling refrigeration system was done and analyzed with varying condenser length. By combining these both systems we can reduce the compressor work, cost, save the electrical energy and environment too.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3298
Author(s):  
Gianpiero Colangelo ◽  
Brenda Raho ◽  
Marco Milanese ◽  
Arturo de Risi

Nanofluids have great potential to improve the heat transfer properties of liquids, as demonstrated by recent studies. This paper presents a novel idea of utilizing nanofluid. It analyzes the performance of a HVAC (Heating Ventilation Air Conditioning) system using a high-performance heat transfer fluid (water-glycol nanofluid with nanoparticles of Al2O3), in the university campus of Lecce, Italy. The work describes the dynamic model of the building and its heating and cooling system, realized through the simulation software TRNSYS 17. The use of heat transfer fluid inseminated by nanoparticles in a real HVAC system is an innovative application that is difficult to find in the scientific literature so far. This work focuses on comparing the efficiency of the system working with a traditional water-glycol mixture with the same system that uses Al2O3-nanofluid. The results obtained by means of the dynamic simulations have confirmed what theoretically assumed, indicating the working conditions of the HVAC system that lead to lower operating costs and higher COP and EER, guaranteeing the optimal conditions of thermo-hygrometric comfort inside the building. Finally, the results showed that the use of a nanofluid based on water-glycol mixture and alumina increases the efficiency about 10% and at the same time reduces the electrical energy consumption of the HVAC system.


Author(s):  
Marvin Schmidt ◽  
Andreas Schütze ◽  
Stefan Seelecke

Energy saving and environmental protection are topics of growing interest. In the light of these aspects alternative refrigeration principles become increasingly important. Shape memory alloys (SMA), especially NiTi alloys, generate a large amount of latent heat during solid state phase transformations, which can lead to a significant cooling effect in the material. These materials do not only provide the potential for an energy-efficient cooling process, they also minimize the impact on the environment by reducing the need for conventional ozone-depleting refrigerants. Our paper, presenting first results obtained in a project within the DFG Priority Program SPP 1599 “Ferroic Cooling”, focuses on the thermodynamic analysis of a NiTi-based cooling system. We first introduce a suitable cooling process and subsequently illustrate the underlying mechanisms of the process in comparison with the conventional compression refrigeration system. We further introduce a graphical solution to calculate the energy efficiency ratio of the system. This thermodynamic analysis method shows the necessary work input and the heat absorption of the SMA in stress/strain- or temperature/entropy-diagrams, respectively. The results of the calculations underline the high potential of this solid-state cooling methodology.


Author(s):  
Tianyi Gao ◽  
James Geer ◽  
Bahgat G. Sammakia ◽  
Russell Tipton ◽  
Mark Seymour

Cooling power constitutes a large portion of the total electrical power consumption in data centers. Approximately 25%∼40% of the electricity used within a production data center is consumed by the cooling system. Improving the cooling energy efficiency has attracted a great deal of research attention. Many strategies have been proposed for cutting the data center energy costs. One of the effective strategies for increasing the cooling efficiency is using dynamic thermal management. Another effective strategy is placing cooling devices (heat exchangers) closer to the source of heat. This is the basic design principle of many hybrid cooling systems and liquid cooling systems for data centers. Dynamic thermal management of data centers is a huge challenge, due to the fact that data centers are operated under complex dynamic conditions, even during normal operating conditions. In addition, hybrid cooling systems for data centers introduce additional localized cooling devices, such as in row cooling units and overhead coolers, which significantly increase the complexity of dynamic thermal management. Therefore, it is of paramount importance to characterize the dynamic responses of data centers under variations from different cooling units, such as cooling air flow rate variations. In this study, a detailed computational analysis of an in row cooler based hybrid cooled data center is conducted using a commercially available computational fluid dynamics (CFD) code. A representative CFD model for a raised floor data center with cold aisle-hot aisle arrangement fashion is developed. The hybrid cooling system is designed using perimeter CRAH units and localized in row cooling units. The CRAH unit supplies centralized cooling air to the under floor plenum, and the cooling air enters the cold aisle through perforated tiles. The in row cooling unit is located on the raised floor between the server racks. It supplies the cooling air directly to the cold aisle, and intakes hot air from the back of the racks (hot aisle). Therefore, two different cooling air sources are supplied to the cold aisle, but the ways they are delivered to the cold aisle are different. Several modeling cases are designed to study the transient effects of variations in the flow rates of the two cooling air sources. The server power and the cooling air flow variation combination scenarios are also modeled and studied. The detailed impacts of each modeling case on the rack inlet air temperature and cold aisle air flow distribution are studied. The results presented in this work provide an understanding of the effects of air flow variations on the thermal performance of data centers. The results and corresponding analysis is used for improving the running efficiency of this type of raised floor hybrid data centers using CRAH and IRC units.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
Solomon O. Giwa ◽  
Mohsen Sharifpur ◽  
Mohammad H. Ahmadi ◽  
S. M. Sohel Murshed ◽  
Josua P. Meyer

The superiority of nanofluid over conventional working fluid has been well researched and proven. Newest on the horizon is the hybrid nanofluid currently being examined due to its improved thermal properties. This paper examined the viscosity and electrical conductivity of deionized water (DIW)-based multiwalled carbon nanotube (MWCNT)-Fe2O3 (20:80) nanofluids at temperatures and volume concentrations ranging from 15 °C to 55 °C and 0.1–1.5%, respectively. The morphology of the suspended hybrid nanofluids was characterized using a transmission electron microscope, and the stability was monitored using visual inspection, UV–visible, and viscosity-checking techniques. With the aid of a viscometer and electrical conductivity meter, the viscosity and electrical conductivity of the hybrid nanofluids were determined, respectively. The MWCNT-Fe2O3/DIW nanofluids were found to be stable and well suspended. Both the electrical conductivity and viscosity of the hybrid nanofluids were augmented with respect to increasing volume concentration. In contrast, the temperature rise was noticed to diminish the viscosity of the nanofluids, but it enhanced electrical conductivity. Maximum increments of 35.7% and 1676.4% were obtained for the viscosity and electrical conductivity of the hybrid nanofluids, respectively, when compared with the base fluid. The obtained results were observed to agree with previous studies in the literature. After fitting the obtained experimental data, high accuracy was achieved with the formulated correlations for estimating the electrical conductivity and viscosity. The examined hybrid nanofluid was noticed to possess a lesser viscosity in comparison with the mono-particle nanofluid of Fe2O3/water, which was good for engineering applications as the pumping power would be reduced.


Author(s):  
Anwar Ilmar RAMADHAN ◽  
Wan Hamzah AZMI ◽  
Rizalman MAMAT

In recent years, research has focused on enhancing the thermo-physical properties of a single component nanofluid. Therefore, hybrid or composite nanofluids have been developed to improve heat transfer performance. The thermo-physical properties of the Al2O3-TiO2-SiO2 nanoparticles suspended in a base of water (W) and ethylene glycol (EG) at constant volume ratio of 60:40 and different volume concentrations were investigated. The experiment was conducted for the volume concentrations of 0.05, 0.1, 0.2, and 0.3% of Al2O3-TiO2-SiO2 nanofluids at different temperatures of 30, 40, 50, 60, and 70 °C. Thermal conductivity and dynamic viscosity measurements were carried out at temperatures ranging from 30 to 70 °C by using KD2 Pro Thermal Properties Analyzer and Brookfield LVDV III Ultra Rheometer, respectively. The highest thermal conductivity for tri-hybrid nanofluids was obtained at 0.3% volume concentration, and the maximum enhancement was increased up to 9% higher than the base fluid (EG/W). Tri-hybrid nanofluids with a volume concentration of 0.05% gave the lowest effective thermal conductivity of 4.8 % at 70 °C temperature. Meanwhile, the dynamic viscosity of the tri-hybrid nanofluids was influenced by volume concentration and temperature. Furthermore, tri-hybrid nanofluids behaved as a Newtonian fluid for volume concentrations from 0.05 to 3.0%. The properties enhancement ratio (PER) estimated that the tri-hybrid nanofluids will aid in heat transfer for all samples in the present. The new correlations for thermal conductivity and dynamic viscosity of tri-hybrid nanofluids were developed with minimum deviation. As a conclusion, the combination of the enhancement in thermal conductivity and dynamic viscosity for tri-hybrid at 0.3% volume concentration was found the optimum condition with more advantage for heat transfer than other concentrations.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012004
Author(s):  
Yu A Borisov ◽  
V V Volkov-Muzilev ◽  
D A Kalashnikov ◽  
H S Khalife

Abstract The article discusses the issues of reducing the size of the cooling unit of the antenna of a radar station by improving the gas-dynamic processes occurring in the air-cooling unit. The results of the experimental studies of the gas flow in a plate-fin heat exchanger, being blown by one axial fan are presented. The feasibility of changing the number of axial fans for organizing a more uniform flow around the heat-exchange surfaces has been determined by calculation and theoretical methods. The calculation results are confirmed by experimental studies of the air flow in the segment of the heat exchanger, which is provided by a smaller fan.


Author(s):  
Hongxi Yin ◽  
Yuefeng Cai ◽  
Hengxing Lv ◽  
Ming Qu ◽  
Guowei Ao ◽  
...  

On the basis of the principles of Green Infrastructure and Building (GIB) in LEED for Green Neighborhood Development (LEED-ND), this paper studies the technical feasibility, economic soundness, and environmental effectiveness of a water-sourced energy system in a 6.5 million square feet mixed-use neighborhood development project in Changsha, Hunan Province, China. Two energy systems proposed for the project are compared in the study by using scientific fundamentals and engineering principle. The two energy systems are: • System One: Use Xiangjiang River as cooling water for absorption chillers to generate chilled water for all buildings. • System Two: Use traditional cooling towers providing cooling water for absorption chillers to generate chilled water for all buildings. The system performance analyses of study show that system one has better energy, environmental and economic performance than system two. Compared to system two, system one is predicted to have a saving of 32% in electricity, 11% in natural gas, and 675 ton/year in CO2 emission; and its system payback year is 8 years. This paper also investigated the impact of system one on the Xiangjiang River by using Fluent computational fluid dynamics (CFD). The results of the CFD simulation indicated that there no significant changes of river temperature over time.. Finally, some suggestions on design and operation have been provided for system one to be implemented.


Sign in / Sign up

Export Citation Format

Share Document