scholarly journals The making of a potent L-lactate transport inhibitor

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Patrick D. Bosshart ◽  
David Kalbermatter ◽  
Sara Bonetti ◽  
Dimitrios Fotiadis

AbstractL-lactate is an important metabolite, energy source, and signaling molecule in health and disease. In mammals, its transport across biological membranes is mediated by monocarboxylate transporters (MCTs) of the solute carrier 16 (SLC16) family. Malfunction, overexpression or absence of transporters of this family are associated with diseases such as cancer and type 2 diabetes. Moreover, lactate acts as a signaling molecule and virulence factor in certain bacterial infections. Here, we report the rational, structure-guided identification of potent, nanomolar affinity inhibitors acting on an L-lactate-specific SLC16 homologue from the bacterium Syntrophobacter fumaroxidans (SfMCT). High-resolution crystal structures of SfMCT with bound inhibitors uncovered their interaction mechanism on an atomic level and the role of water molecules in inhibitor binding. The presented systematic approach is a valuable procedure for the identification of L-lactate transport inhibitors. Furthermore, identified inhibitors represent potential tool compounds to interfere with monocarboxylate transport across biological membranes mediated by MCTs.

2020 ◽  
Vol 8 (11) ◽  
pp. 1802
Author(s):  
Maciej Żaczek ◽  
Beata Weber-Dąbrowska ◽  
Ryszard Międzybrodzki ◽  
Andrzej Górski

Recent metagenomic analyses imply an immense abundance of phages in the human body. Samples collected from different sites (lungs, skin, oral cavity, intestines, ascitic fluid, and urine) reveal a generally greater number of phage particles than that of eukaryotic viruses. The presence of phages in those tissues and fluids reflects the paths they must overcome in the human body, but may also relate to the health statuses of individuals. Besides shaping bacterial metabolism and community structure, the role of phages circulating in body fluids has not been fully understood yet. The lack of relevant reports is especially visible with regard to the human urobiome. Certainly, phage presence and the role they have to fulfill in the human urinary tract raises questions on potential therapeutic connotations. Urinary tract infections (UTIs) are among the most common bacterial infections in humans and their treatment poses a difficult therapeutic dilemma. Despite effective antibiotic therapy, these infections tend to recur. In this review, we summarized the recent data on phage presence in the human urinary tract and its possible implications for health and disease.


2005 ◽  
Author(s):  
Tsung-Ming Shih ◽  
Gretchen L. Snyder ◽  
Allen A. Fienberg ◽  
Stacey Galdi ◽  
Minal Rana ◽  
...  

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 88
Author(s):  
Raquel G. D. Andrade ◽  
Bruno Reis ◽  
Benjamin Costas ◽  
Sofia A. Costa Lima ◽  
Salette Reis

Exploiting surface endocytosis receptors using carbohydrate-conjugated nanocarriers brings outstanding approaches to an efficient delivery towards a specific target. Macrophages are cells of innate immunity found throughout the body. Plasticity of macrophages is evidenced by alterations in phenotypic polarization in response to stimuli, and is associated with changes in effector molecules, receptor expression, and cytokine profile. M1-polarized macrophages are involved in pro-inflammatory responses while M2 macrophages are capable of anti-inflammatory response and tissue repair. Modulation of macrophages’ activation state is an effective approach for several disease therapies, mediated by carbohydrate-coated nanocarriers. In this review, polymeric nanocarriers targeting macrophages are described in terms of production methods and conjugation strategies, highlighting the role of mannose receptor in the polarization of macrophages, and targeting approaches for infectious diseases, cancer immunotherapy, and prevention. Translation of this nanomedicine approach still requires further elucidation of the interaction mechanism between nanocarriers and macrophages towards clinical applications.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1256
Author(s):  
Ivan Y. Iourov ◽  
Yuri B. Yurov ◽  
Svetlana G. Vorsanova ◽  
Sergei I. Kutsev

Chromosome instability (CIN) has been repeatedly associated with aging and progeroid phenotypes. Moreover, brain-specific CIN seems to be an important element of pathogenic cascades leading to neurodegeneration in late adulthood. Alternatively, CIN and aneuploidy (chromosomal loss/gain) syndromes exhibit accelerated aging phenotypes. Molecularly, cellular senescence, which seems to be mediated by CIN and aneuploidy, is likely to contribute to brain aging in health and disease. However, there is no consensus about the occurrence of CIN in the aging brain. As a result, the role of CIN/somatic aneuploidy in normal and pathological brain aging is a matter of debate. Still, taking into account the effects of CIN on cellular homeostasis, the possibility of involvement in brain aging is highly likely. More importantly, the CIN contribution to neuronal cell death may be responsible for neurodegeneration and the aging-related deterioration of the brain. The loss of CIN-affected neurons probably underlies the contradiction between reports addressing ontogenetic changes of karyotypes within the aged brain. In future studies, the combination of single-cell visualization and whole-genome techniques with systems biology methods would certainly define the intrinsic role of CIN in the aging of the normal and diseased brain.


2020 ◽  
pp. 1-9
Author(s):  
Anaisa Valido Ferreira ◽  
Jorge Domiguéz-Andrés ◽  
Mihai Gheorghe Netea

Immunological memory is classically attributed to adaptive immune responses, but recent studies have shown that challenged innate immune cells can display long-term functional changes that increase nonspecific responsiveness to subsequent infections. This phenomenon, coined <i>trained immunity</i> or <i>innate immune memory</i>, is based on the epigenetic reprogramming and the rewiring of intracellular metabolic pathways. Here, we review the different metabolic pathways that are modulated in trained immunity. Glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, amino acid, and lipid metabolism are interplaying pathways that are crucial for the establishment of innate immune memory. Unraveling this metabolic wiring allows for a better understanding of innate immune contribution to health and disease. These insights may open avenues for the development of future therapies that aim to harness or dampen the power of the innate immune response.


2012 ◽  
Vol 35 (6) ◽  
pp. ---
Author(s):  
Katharina Biller ◽  
Peter Fae ◽  
Reinhard Germann ◽  
Autar K. Walli ◽  
Peter Fraunberger

Abstract The role of procalcitonin (PCT) plasma levels as a diagnostic tool for intensive care patients has been intensively investigated during the past years. In particular for recognition of bacterial infections, PCT levels have been shown to be superior to other clinical and biochemical markers. Furthermore, some very recent studies show that in patients with lower respiratory tract infections PCT guided antibiotic therapy reduces antibiotic use and thereby may also reduce duration of stay of patients in hospital and thus cut hospitalisation costs. However, various studies indicate that the value of PCT as a prognostic marker is limited because of false positive or negative values. Despite these limitations PCT plasma levels are currently measured in intensive care units. The present study summarises the possible clinical uses of this laboratory marker as a diagnostic tool for the assessment of critically ill patients.


Sign in / Sign up

Export Citation Format

Share Document