scholarly journals Publisher Correction: Rapid metal pollutant deposition from the volcanic plume of Kīlauea, Hawai’i

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Evgenia Ilyinskaya ◽  
Emily Mason ◽  
Penny E. Wieser ◽  
Lacey Holland ◽  
Emma J. Liu ◽  
...  
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Evgenia Ilyinskaya ◽  
Emily Mason ◽  
Penny E. Wieser ◽  
Lacey Holland ◽  
Emma J. Liu ◽  
...  

AbstractLong-lived basaltic volcanic eruptions are a globally important source of environmentally reactive, volatile metal pollutant elements such as selenium, cadmium and lead. The 2018 eruption of Kīlauea, Hawai’i produced exceptionally high discharge of metal pollutants, and was an unprecedented opportunity to track them from vent to deposition. Here we show, through geochemical sampling of the plume that volatile metal pollutants were depleted in the plume up to 100 times faster than refractory species, such as magnesium and iron. We propose that this rapid wet deposition of complexes containing reactive and potentially toxic volatile metal pollutants may disproportionately impact localised areas close to the vent. We infer that the relationship between volatility and solubility is an important control on the atmospheric behaviour of elements. We suggest that assessment of hazards from volcanic emissions should account for heterogeneous plume depletion of metal pollutants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suvarna Fadnavis ◽  
Rolf Müller ◽  
Tanusri Chakraborty ◽  
T. P. Sabin ◽  
Anton Laakso ◽  
...  

AbstractThe Indian summer monsoon rainfall (ISMR) is vital for the livelihood of millions of people in the Indian region; droughts caused by monsoon failures often resulted in famines. Large volcanic eruptions have been linked with reductions in ISMR, but the responsible mechanisms remain unclear. Here, using 145-year (1871–2016) records of volcanic eruptions and ISMR, we show that ISMR deficits prevail for two years after moderate and large (VEI > 3) tropical volcanic eruptions; this is not the case for extra-tropical eruptions. Moreover, tropical volcanic eruptions strengthen El Niño and weaken La Niña conditions, further enhancing Indian droughts. Using climate-model simulations of the 2011 Nabro volcanic eruption, we show that eruption induced an El Niño like warming in the central Pacific for two consecutive years due to Kelvin wave dissipation triggered by the eruption. This El Niño like warming in the central Pacific led to a precipitation reduction in the Indian region. In addition, solar dimming caused by the volcanic plume in 2011 reduced Indian rainfall.


2010 ◽  
Vol 18 (NA) ◽  
pp. 87-114 ◽  
Author(s):  
Marek Błaś ◽  
Katarzyna Cichała-Kamrowska ◽  
Mieczysław Sobik ◽  
Żaneta Polkowska ◽  
Jacek Namieśnik

Solid precipitation represents a potentially important addition to other measures of deposition. However, an accurate estimate of snowfall amount and pollutant loading is not a trivial matter. There are obvious distinctions between regular precipitation collection and snowpack sampling that represent the cumulative chemistry of bulk deposition. The main goal is to show the most important processes and factors that may influence the rate and magnitude of pollutants deposition affected by the snowfall and snow cover: atmospheric pollutant enhancement of snowfall, pollutants deposition at snow cover surface, drifting and blowing snow, formation of the snow cover and its internal changes, as well as pollutants flow through the snowpack. These phenomena lead to continuous changes in the chemistry of the snow cover and the deposition calculated on the basis of pollutants concentrations in daily portions of atmospheric precipitation. The real deposition released from snowpack is strictly related to the number and depth of thaw episodes. If the amount of stored pollutants is large, first portions of ablation water flushing from the snowpack can carry the load of pollutants, and potentially affecting the environment in a detrimental way. Igneous bedrock is especially sensitive to acidic ions because of its low buffering capacity.


2011 ◽  
Vol 284 (5) ◽  
pp. 1295-1298 ◽  
Author(s):  
Luca Fiorani ◽  
Francesco Colao ◽  
Antonio Palucci ◽  
Davod Poreh ◽  
Alessandro Aiuppa ◽  
...  

2021 ◽  
Author(s):  
Rafael Castro ◽  
Tushar Mittal ◽  
Stephen Self

<p>The 1883 Krakatau eruption is one of the most well-known historical volcanic eruptions due to its significant global climate impact as well as first recorded observations of various aerosol associated optical and physical phenomena. Although much work has been done on the former by comparison of global climate model predictions/ simulations with instrumental and proxy climate records, the latter has surprisingly not been studied in similar detail. In particular, there is a wealth of observations of vivid red sunsets, blue suns, and other similar features, that can be used to analyze the spatio-temporal dispersal of volcanic aerosols in summer to winter 1883. Thus, aerosol cloud dispersal after the Krakatau eruption can be estimated, bolstered by aerosol cloud behavior as monitored by satellite-based instrument observations after the 1991 Pinatubo eruption. This is one of a handful of large historic eruptions where this analysis can be done (using non-climate proxy methods). In this study, we model particle trajectories of the Krakatau eruption cloud using the Hysplit trajectory model and compare our results with our compiled observational dataset (principally using Verbeek 1884, the Royal Society report, and Kiessling 1884).</p><p>In particular, we explore the effect of different atmospheric states - the quasi-biennial oscillation (QBO) which impacts zonal movement of the stratospheric volcanic plume - to estimate the phase of the QBO in 1883 required for a fast-moving westward cloud. Since this alone is unable to match the observed latitudinal spread of the aerosols, we then explore the impact of an  umbrella cloud (2000 km diameter) that almost certainly formed during such a large eruption. A large umbrella cloud, spreading over ~18 degrees within the duration of the climax of the eruption (6-8 hours), can lead to much quicker latitudinal spread than a point source (vent). We will discuss the results of the combined model (umbrella cloud and correct QBO phase) with historical accounts and observations, as well as previous work on the 1991 Pinatubo eruption. We also consider the likely impacts of water on aerosol concentrations and the relevance of this process for eruptions with possible significant seawater interactions, like Krakatau. We posit that the role of umbrella clouds is an under-appreciated, but significant, process for beginning to model the climatic impacts of large volcanic eruptions.</p>


2021 ◽  
pp. 94-103
Author(s):  
Jiangtao Du ◽  
Steve Sharples

The deposition of air pollutants on glazing can significantly affect the daylight transmittance of building fenestration systems in urban areas. This study presents a simulation analysis of the impact of air pollution and glazing visual transmittance on indoor daylight availability in an open-plan office in London. First, the direct links between glazing visual transmittance and daylighting conditions were developed and assessed. Second, several simple algorithms were established to estimate the loss of daylight availability due to the pollutant deposition at the external surface of vertical glazing. Finally, some conclusions and design strategies to support facade planning at the early design stage of an urban building project were developed.


2021 ◽  
Author(s):  
Anna Kampouri ◽  
Vassilis Amiridis ◽  
Stavros Solomos ◽  
Anna Gialitaki ◽  
Eleni Marinou ◽  
...  

<p>In the last years, several Etna eruption events are documented, forming lava flows and explosive activity. The Pilot EO4D_ash – Earth observation data for detection, discrimination & distribution (4D) of volcanic ash of the e-shape project provides the PANhellenic GEophysical observatory of Antikythera (PANGEA) of the National Observatory of Athens (NOA), in Greece with near-real-time alerts from Etna volcano eruptions. These alerts are used in the PANGEA station to monitor and reveal the presence of volcanic particles above the area the days following an eruption, also the station is supported by a volcanic particle monitoring and forecasting warning system. In this work, we investigate the volcano eruption between 30 May and 6 June 2019 which affected the southern parts of Greece and reaching the Antikythera station. Due to the prevailing meteorological conditions, volcanic particles and gases followed an easterly direction and were dispersed towards Greece. FLEXPART dispersion model simulations confirm the volcanic plume transport from Etna towards PANGEA, mixing also with co-existing desert dust particles. Model simulations are evaluated with Polly<sup>XT</sup> lidar measurements performed at PANGEA and satellite-based SO<sub>2</sub> observations from the TROPOspheric Monitoring Instrument onboard the Sentinel-5 Precursor (TROPOMI/S5P). This is the first time that Etna volcanic products are monitored at the Antikythera station, in Greece with implications for the investigation of their role in the Mediterranean weather and climate.</p><p><strong>Acknowledgments</strong>: We acknowledge the support by EU H2020 E-shape project (Grant Agreement n. 820852). Also, this research was supported by data and services obtained from the PANhellenic Geophysical Observatory of Antikythera (PANGEA) of the National Observatory of Athens (NOA), Greece, and by the project “PANhellenic infrastructure for Atmospheric Composition and climatE change” (MIS 5021516) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund). NOA team acknowledges the support of the Stavros Niarchos Foundation (SNF).</p>


2018 ◽  
Author(s):  
Xue Wu ◽  
Sabine Griessbach ◽  
Lars Hoffmann

Abstract. Volcanic sulfate aerosol is an important source of sulfur for Antarctica where other local sources of sulfur are rare. Mid- and high latitude volcanic eruptions can directly influence the aerosol budget of the polar stratosphere. However, tropical eruptions can also enhance polar aerosol load following long-range transport. In the present work, we analyze the volcanic plume of a tropical eruption, Mount Merapi in October 2010, using the Lagrangian particle dispersion model Massive-Parallel Trajectory Calculations (MPTRAC), Atmospheric Infrared Sounder (AIRS) SO2 observations and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aerosol observations. We investigate the pathway and transport efficiency of the volcanic aerosol from the tropical tropopause layer (TTL) to the lower stratosphere over Antarctica. We first estimated the time- and height-resolved SO2 injection time series over Mount Merapi during the explosive eruption using the AIRS SO2 observations and a backward trajectory approach. Then the SO2 injections were tracked for up to 6 months using the MPTRAC model. The Lagrangian transport simulation of the volcanic plume was compared to MIPAS aerosol observations and showed good agreement. Both of the simulation and the observations presented in this study suggest that a significant amount of aerosols of the volcanic plume from the Merapi eruption was transported from the tropics to the south of 60 °S within one month after the eruption and even further to Antarctica in the following two months. This relatively fast meridional transport of volcanic aerosol was mainly driven by quasi-horizontal mixing from the TTL to the extratropical lower stratosphere, which was facilitated by the weakening of the subtropical jet during the seasonal transition from austral spring to summer and linked to the westerly phase of the quasi-biennial oscillation (QBO). When the plume went to southern high latitudes, the polar vortex was displaced from the south pole, so the volcanic plume was carried to the south pole without penetrating the polar vortex. Based on the model results, the most efficient pathway for the quasi-horizontal mixing was in between the isentropic surfaces of 360 and 430 K. Although only 4 % of the initial SO2 load was transported into the lower stratosphere south of 60 °S, the Merapi eruption contributed about 8800 tons of sulfur to the Antarctic lower stratosphere. This indicates that the long-range transport under favorable meteorological conditions enables tropical volcanic eruptions to be an important remote source of sulfur for the Antarctic stratosphere.


Sign in / Sign up

Export Citation Format

Share Document