A versatile method for producing functionalized cellulose nanofibers and their application

Nanoscale ◽  
2016 ◽  
Vol 8 (6) ◽  
pp. 3753-3759 ◽  
Author(s):  
Pei Huang ◽  
Yang Zhao ◽  
Shigenori Kuga ◽  
Min Wu ◽  
Yong Huang

Individual dispersed cellulose nanofibers can be produced through ball milling by adding anhydride and DMAP in one step. By altering the type of anhydride, the cellulose nanofiber presents different surface properties and tailored compatibility with varied solvents or matrices, which greatly promote the massive applications of cellulose nanofibers.

2021 ◽  
Vol 254 ◽  
pp. 117464
Author(s):  
Xiaojia Guo ◽  
Huimin Gao ◽  
Jingxian Zhang ◽  
Lina Zhang ◽  
Xiaowen Shi ◽  
...  

2017 ◽  
Vol 754 ◽  
pp. 135-138
Author(s):  
Hitoshi Takagi ◽  
Antonio Norio Nakagaito ◽  
Yuya Sakaguchi

The presence of nanoscale cellulosic fiber; namely cellulose nanofiber, increases year by year because the mechanical and physical properties are believed to be comparable to those of common glass fibers. On the other hand, most of the reported strength data for the cellulose nanofiber-reinforced polymeric composite materials was not as high as expected. In order to obtain high-strength cellulose nanofiber-reinforced polymer composites, we tried to optimize the fiber orientation of cellulose nanofibers in poly (vinyl alcohol)-based polymer matrix by using a repeated mechanical stretching treatment. The fiber orientation of cellulose nanofibers in the poly (vinyl alcohol) matrix can be modified by changing the total amount of stretching strain applied during the multiple stretching treatments. The degree of fiber alignment was directly evaluated by observing the cellulose nanofibers on the sample surface with a digital microscope. The efficacy of proposed nanofiber alignment control has been explored experimentally and theoretically. The tensile strength and modulus of the cellulosic nanocomposites after applying the multiple stretching treatments increased by approximately 80% and 40% respectively, as compared with those of the untreated nanocomposites.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540025 ◽  
Author(s):  
Hitoshi Takagi ◽  
Antonio N. Nakagaito ◽  
Kazuya Kusaka ◽  
Yuya Muneta

Cellulose nanofibers have been showing much greater potential to enhance the mechanical and physical properties of polymer-based composite materials. The purpose of this study is to extract the cellulose nanofibers from waste bio-resources; such as waste newspaper and paper sludge. The cellulosic raw materials were treated chemically and physically in order to extract individualized cellulose nanofiber. The combination of acid hydrolysis and following mechanical treatment resulted in the extraction of cellulose nanofibers having diameter of about 40 nm. In order to examine the reinforcing effect of the extracted cellulose nanofibers, fully biodegradable green nanocomposites were fabricated by composing polyvinyl alcohol (PVA) resin with the extracted cellulose nanofibers, and then the tensile tests were conducted. The results showed that the enhancement in mechanical properties was successfully obtained in the cellulose nanofiber/PVA green nanocomposites.


2014 ◽  
Vol 1621 ◽  
pp. 149-154
Author(s):  
Yukako Oishi ◽  
Atsushi Hotta

ABSTRACTCellulose nanofibers (Cel-F) were extracted by a simple and harmless Star Burst (SB) method, which produced aqueous cellulose-nanofiber solution just by running original cellulose beads under a high pressure of water in the synthetic SB chamber. By optimizing the SB process conditions, the cellulose nanofibers with high aspect ratios and the small diameter of ∼23 nm were obtained, which was confirmed by transmission electron microscopy (TEM). From the structural analysis of the Cel-F/PVA composite by the scanning electron microscopy (SEM), it was found that the Cel-F were homogeneously dispersed in the PVA matrix. Considering the high molecular compatibility of the cellulose and PVA due to the hydrogen bonding, a good adhesive interface could be expected for the Cel-F and the PVA matrix. The influences of the morphological change in Cel-F on the mechanical properties of the composites were analysed. The Young’s modulus rapidly increased from 2.2 GPa to 2.9 GPa up to 40 SB treatments (represented by the unit Pass), whereas the Young’s modulus remained virtually constant above 40 Pass. Due to the uniform dispersibility of the Cel-F, the Young’s modulus of the 100 Pass composite at the concentration of 5 wt% increased up to 3.2 GPa. The experimental results corresponded well with the general theory of the composites with dispersed short-fiber fillers, which clearly indicated that the potential of the cellulose nanofibers as reinforcement materials for hydrophilic polymers was sufficiently confirmed.


2012 ◽  
Vol 445 ◽  
pp. 797-802 ◽  
Author(s):  
Alice Mesnage ◽  
Pardis Simon ◽  
Guy Deniau ◽  
Nathalie Herlin-Boime ◽  
Serge Palacin

This document aims at presenting and explaining the mechanism of a simple green process, called Graftfast©, recently developed in order to graft polymer films onto any type of materials. This process is of great interest as it works in a short one step reaction at room temperature, atmospheric pressure in water. Particularly since this method is a redoxinduced process consisting in the reduction of diazonium salts into aryl radicals in presence of vinylic monomer, the involvement of such radicals was investigated. Moreover, this work demonstrates the efficiency of such process for the preparation of functionalized TiO2 nanoparticles. The composition and the grafted polymer quantities were investigated showing the successful grafting of the polymer onto the nanoparticles while conserving their morphology.


2021 ◽  
Author(s):  
Zhijun Hu ◽  
Xinyu Cao ◽  
Guanhong Huang ◽  
Daliang Guo

Abstract Here, a new pretreatment method has been developed to produce CNFs from micro-fibrillated cellulose (MFC) by supercritical CO 2 pretreatment followed with ball-milling (SCB). MFC was obtained from cotton stalk by chemical purification.Experimental factors were controlled to enhance the properties of SCB-CNF, meanwhile a comparative study was conducted with the method of TEMPO oxidation and microfluid homogenization (TMH). Compared to TMH-CNF, the SCB-CNF has such advantages as Energy saving, high efficiency and environmental protection, indicating a wide application in heat-resistant materials, load materials and other fields. The solid yields of P-MFC after supercritical CO 2 pretreatment gradually decreased together with the temperature and the reaction time. Scanning electron microscope (SEM) images of the SCB-CNF and TMH-CNF show that the morphology of the SCB-CNF was basically acicular but that of the TMH-CNF was mainly soft fibrous. The SCB-CNF is smaller in width and shorter in length, and its size is between CNC and CNF. Thermal gravimetric results suggest that the thermal stability of the SCB-CNF was substantially higher than those of the TMH-CNF. XRD results indicate that the crystallinity showed an initial increasing trend and then declined with increasing temperature and reaction time, and the crystallinity value of SCB-CNF was larger than that of CNFs. The smaller SCB-CNF became rougher and had a larger surface area. High crystallinity make good thermal stability, short and coarse fiber, easier to disperse than CNF, less energy consumption for dispersion, better than 3D mesh. It can be widely used in polymer composites, reinforcing agents, membrane materials and other fields.


Cellulose ◽  
2017 ◽  
Vol 24 (5) ◽  
pp. 2083-2093 ◽  
Author(s):  
Patchiya Phanthong ◽  
Surachai Karnjanakom ◽  
Prasert Reubroycharoen ◽  
Xiaogang Hao ◽  
Abuliti Abudula ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document