scholarly journals Promises, facts and challenges for graphene in biomedical applications

2017 ◽  
Vol 46 (15) ◽  
pp. 4400-4416 ◽  
Author(s):  
Giacomo Reina ◽  
José Miguel González-Domínguez ◽  
Alejandro Criado ◽  
Ester Vázquez ◽  
Alberto Bianco ◽  
...  

Graphene-based materials can contribute favorably to the biomedical field. Particularly promising areas of development include sensors, controlled drug delivery and tissue engineering.

The researchers across the world are actively engaged in strategic development of new porous aerogel materials for possible application of these extraordinary materials in the biomedical field. Due to their excellent porosity and established biocompatibility, aerogels are now emerging as viable solutions for drug delivery and other biomedical applications. This chapter aims to cover the diverse aerogel materials used across the globe for different biomedical applications including drug delivery, implantable devices, regenerative medicine encompassing tissue engineering and bone regeneration, and biosensing.


2018 ◽  
Vol 24 (8) ◽  
pp. 843-854 ◽  
Author(s):  
Weiguo Xu ◽  
Shujun Dong ◽  
Yuping Han ◽  
Shuqiang Li ◽  
Yang Liu

Hydrogels, as a class of materials for tissue engineering and drug delivery, have high water content and solid-like mechanical properties. Currently, hydrogels with an antibacterial function are a research hotspot in biomedical field. Many advanced antibacterial hydrogels have been developed, each possessing unique qualities, namely high water swellability, high oxygen permeability, improved biocompatibility, ease of loading and releasing drugs and structural diversity. In this article, an overview is provided on the preparation and applications of various antibacterial hydrogels. Furthermore, the prospects in biomedical researches and clinical applications are predicted.


2021 ◽  
Author(s):  
Marissa Morales-Moctezuma ◽  
Sebastian G Spain

Nanogels have emerged as innovative platforms for numerous biomedical applications including gene and drug delivery, biosensors, imaging, and tissue engineering. Polymerisation-induced thermal self-assembly (PITSA) has been shown to be suitable...


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Lei Xiang ◽  
Wenguo Cui

Abstract During the past decades, photo-crosslinked gelatin hydrogel (methacrylated gelatin, GelMA) has gained a lot of attention due to its remarkable application in the biomedical field. It has been widely used in cell transplantation, cell culture and drug delivery, based on its crosslinking to form hydrogels with tunable mechanical properties and excellent bio-compatibility when exposed to light irradiation to mimic the micro-environment of native extracellular matrix (ECM). Because of its unique biofunctionality and mechanical tenability, it has also been widely applied in the repair and regeneration of bone, heart, cornea, epidermal tissue, cartilage, vascular, peripheral nerve, oral mucosa, and skeletal muscle et al. The purpose of this review is to summarize the recent application of GelMA in drug delivery and tissue engineering field. Moreover, this review article will briefly introduce both the development of GelMA and the characterization of GelMA. Finally, we discuss the challenges and future development prospects of GelMA as a tissue engineering material and drug or gene delivery carrier, hoping to contribute to accelerating the development of GelMA in the biomedical field. Graphical abstract


2022 ◽  
Vol 23 (2) ◽  
pp. 610
Author(s):  
Teresa Aditya ◽  
Jean Paul Allain ◽  
Camilo Jaramillo ◽  
Andrea Mesa Restrepo

Bacterial cellulose is a naturally occurring polysaccharide with numerous biomedical applications that range from drug delivery platforms to tissue engineering strategies. BC possesses remarkable biocompatibility, microstructure, and mechanical properties that resemble native human tissues, making it suitable for the replacement of damaged or injured tissues. In this review, we will discuss the structure and mechanical properties of the BC and summarize the techniques used to characterize these properties. We will also discuss the functionalization of BC to yield nanocomposites and the surface modification of BC by plasma and irradiation-based methods to fabricate materials with improved functionalities such as bactericidal capabilities.


Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 654 ◽  
Author(s):  
Ana Isabel Barbosa ◽  
Ana Joyce Coutinho ◽  
Sofia A. Costa Lima ◽  
Salette Reis

The use of marine-origin polysaccharides has increased in recent research because they are abundant, cheap, biocompatible, and biodegradable. These features motivate their application in nanotechnology as drug delivery systems; in tissue engineering, cancer therapy, or wound dressing; in biosensors; and even water treatment. Given the physicochemical and bioactive properties of fucoidan and chitosan, a wide range of nanostructures has been developed with these polysaccharides per se and in combination. This review provides an outline of these marine polysaccharides, including their sources, chemical structure, biological properties, and nanomedicine applications; their combination as nanoparticles with descriptions of the most commonly used production methods; and their physicochemical and biological properties applied to the design of nanoparticles to deliver several classes of compounds. A final section gives a brief overview of some biomedical applications of fucoidan and chitosan for tissue engineering and wound healing.


2020 ◽  
Vol 44 (17) ◽  
pp. 7175-7185 ◽  
Author(s):  
Varun Prasath Padmanabhan ◽  
Subha Balakrishnan ◽  
Ravichandran Kulandaivelu ◽  
Sankara Narayanan T. S. N. ◽  
Muthukrishnan Lakshmipathy ◽  
...  

In this work, nanospherical hydroxyapatite (HAP) was prepared that has combined properties of controlled drug delivery, biocompatibility, and antibacterial activity to have applications in the biomedical sector.


Sign in / Sign up

Export Citation Format

Share Document