scholarly journals Valorization of papaya fruit waste through low-cost fractionation and microbial conversion of both juice and seed lipids

RSC Advances ◽  
2018 ◽  
Vol 8 (49) ◽  
pp. 27963-27972 ◽  
Author(s):  
Zhenlin Han ◽  
Alex Park ◽  
Wei Wen Su

Seed oil from papaya waste was validated as a novel carbon substrate for Yarrowia lipolytica to produce high-value products.

2017 ◽  
Vol 114 (27) ◽  
pp. E5308-E5316 ◽  
Author(s):  
Jingyang Xu ◽  
Nian Liu ◽  
Kangjian Qiao ◽  
Sebastian Vogg ◽  
Gregory Stephanopoulos

Acetic acid can be generated through syngas fermentation, lignocellulosic biomass degradation, and organic waste anaerobic digestion. Microbial conversion of acetate into triacylglycerols for biofuel production has many advantages, including low-cost or even negative-cost feedstock and environmental benefits. The main issue stems from the dilute nature of acetate produced in such systems, which is costly to be processed on an industrial scale. To tackle this problem, we established an efficient bioprocess for converting dilute acetate into lipids, using the oleaginous yeast Yarrowia lipolytica in a semicontinuous system. The implemented design used low-strength acetic acid in both salt and acid forms as carbon substrate and a cross-filtration module for cell recycling. Feed controls for acetic acid and nitrogen based on metabolic models and online measurement of the respiratory quotient were used. The optimized process was able to sustain high-density cell culture using acetic acid of only 3% and achieved a lipid titer, yield, and productivity of 115 g/L, 0.16 g/g, and 0.8 g⋅L−1⋅h−1, respectively. No carbon substrate was detected in the effluent stream, indicating complete utilization of acetate. These results represent a more than twofold increase in lipid production metrics compared with the current best-performing results using concentrated acetic acid as carbon feed.


2020 ◽  
Vol 12 (17) ◽  
pp. 7122
Author(s):  
Ludwika Tomaszewska-Hetman ◽  
Waldemar Rymowicz ◽  
Anita Rywińska

The study proposed the innovative low-cost strategy for erythritol production by Yarrowia lipolytica through developing a simple medium based on industrial waste by-products and a natural method for culture broth purification. Results obtained proved that corn steep liquor might successfully replace traditional sources of nitrogen and other nutrients without compromising activities of the enzymes responsible for erythritol production and its production level. As a consequence, a production process was performed where Y. lipolytica A-6 was able to produce 108.0 g/L of erythritol, with a production rate of 1.04 g/Lh and a yield of 0.45 g/g of the medium containing exclusively 220 g/L of crude glycerol derived from biodiesel production and 40 g/L of corn steep liquor. Moreover, a comparable concentration of erythritol (108.1 g/L) was obtained when a part of crude glycerol was exchanged for the crude fraction of fatty acids in the two-steps process. Next, the collected post-fermentation broths were used in the culture with Y. lipolytica Wratislavia K1 for natural purification. The process resulted in a high increase of erythritol selectivity from 72% to 97% and in the production of 22.0 g/L of biomass with 40.4% protein content, which enables its use as an attractive animal feedstuff.


2021 ◽  
Vol 105 (3) ◽  
pp. 975-989
Author(s):  
Ewelina Celińska ◽  
Jean-Marc Nicaud ◽  
Wojciech Białas

Abstract Consolidated bioprocessing (CBP) featuring concomitant hydrolysis of renewable substrates and microbial conversion into value-added biomolecules is considered to bring substantial benefits to the overall process efficiency. The biggest challenge in developing an economically feasible CBP process is identification of bifunctional biocatalyst merging the ability to utilize the substrate and convert it to value-added product with high efficiency. Yarrowia lipolytica is known for its exceptional performance in hydrophobic substrates assimilation and storage. On the other hand, its capacity to grow on plant-derived biomass is strongly limited. Still, its high potential to simultaneously overproduce several secretory proteins makes Y. lipolytica a platform of choice for expanding its substrate range to complex polysaccharides by engineering its hydrolytic secretome. This review provides an overview of different genetic engineering strategies advancing development of Y. lipolytica strains able to grow on the following four complex polysaccharides: starch, cellulose, xylan, and inulin. Much attention has been paid to genome mining studies uncovering native potential of this species to assimilate untypical sugars, as in many cases it turns out that dormant pathways are present in Y. lipolytica’s genome. In addition, the magnitude of the economic gain by CBP processing is here discussed and supported with adequate calculations based on simulated process models. Key points • The mini-review updates the knowledge on polysaccharide-utilizing Yarrowia lipolytica. • Insight into molecular bases founding new biochemical qualities is provided. • Model industrial processes were simulated and the associated costs were calculated.


2013 ◽  
Vol 389 ◽  
pp. 29-35 ◽  
Author(s):  
Norzila Othman ◽  
S. Mohd-Asharuddin ◽  
M.F.H. Azizul-Rahman

Biosorption is an environmental friendly method for metal removal as it can be used as a cost effective and efficient technique for heavy metal removal. A lot of biomass can be choosed as biosorbent such as waste material from food processing and agriculture.ent. This paper will review the potential used of local fruit rind as biosorbent for heavy metal removal in wastewater. Heavy metals have been in various industries and resulted to a toxic condition in aquatic ecosystem. Therefore, various techniques have been employed for the treatment of metal-bearing industrial wastewaters including biological treatment through biosorption. Biosorption offers the advantages of low cost, good efficiency and production of sludge with high metal content is possible to avoid by the existence of metal recovery method from metal loaded biosorbent. The successful application of local fruit waste in treating wastewater containing heavy metals requires a deeper understanding of how biosorbent material proceeds.


2020 ◽  
Vol 56 ◽  
pp. 123-129 ◽  
Author(s):  
Mercedes Llamas ◽  
Elia Tomás-Pejó ◽  
Cristina González-Fernández

2020 ◽  
Vol 12 (18) ◽  
pp. 7704
Author(s):  
Katarzyna Drzymała ◽  
Aleksandra Maria Mirończuk ◽  
Witold Pietrzak ◽  
Adam Dobrowolski

The aim of this study was to test rye straw, rye bran and oat bran hydrolysates as substrates for growth of the yeast Yarrowia lipolytica, a microorganism known to have large biotechnological potential. First, after the combined process of acid-enzymatic hydrolysis, the concentration and composition of fermentable monosaccharides in the obtained hydrolysates were analyzed. Glucose was the main sugar, followed by xylose and arabinose. Rye bran hydrolysate had the highest sugar content—80.8 g/L. The results showed that this yeast was able to grow on low-cost medium and produce biomass that could be used as a feed in the form of single cell protein. The biomass of yeast grown in oat bran hydrolysate was over 9 g/L after 120 h, with the biomass total yield and total productivity values of 0.141 g/g and 0.078 g/h, respectively. The protein contents in yeast biomass were in the range of 30.5–44.5% of dry weight. Results obtained from Y. lipolytica cultivated in rye bran showed high content of exogenous amino acid (leucine 3.38 g, lysine 2.93 g, threonine 2.31 g/100 g of dry mass) and spectrum of unsaturated fatty acid with predominantly oleic acid—59.28%. In conclusion, these results demonstrate that lignocellulosic agricultural waste, after hydrolysis, could be efficiently converted to feed-related yeast biomass.


2017 ◽  
Vol 27 (4) ◽  
pp. 523-529 ◽  
Author(s):  
Mohammed El-Sayed El-Mahrouk ◽  
Yaser Hassan Dewir ◽  
Salah El-Hendawy

Grape (Vitis vinifera) waste management is a major problem in juice production, but it could be transformed into a major opportunity if the waste was recycled and used as a nursery growing medium. The aim of this study was to evaluate the suitability of four composts based on squeezed grape fruit waste (SGFW), mixed with coir or vermiculite in a one-to-one ratio by volume to form 13 growing media, for seed germination and seedling growth of ‘Mrs. Burns’ lemon basil (Ocimum basilicum var. citriodora). The final germination percentage (FGP), corrected germination rate index (CGRI), survival percentage, and seedling growth of ‘Mrs. Burns’ lemon basil were the variables measured. Pure SGFW reduced seed germination and seedling growth. The medium combining pure SGFW with vermiculite in a one-to-one ratio by volume was optimal for seed germination and seedling growth; in this medium the highest FGP, CGRI, survival rate, and growth parameters were recorded. The negative effects of pure SGFW composts were eliminated by mixing all composts with coir or vermiculite. These waste recycling media are low-cost products that can be beneficially used in nurseries on a commercial scale.


2020 ◽  
Vol 8 (4) ◽  
pp. 574 ◽  
Author(s):  
Patrick Fickers ◽  
Hairong Cheng ◽  
Carol Sze Ki Lin

Sugar alcohols and organic acids that derive from the metabolism of certain microorganisms have a panoply of applications in agro-food, chemical and pharmaceutical industries. The main challenge in their production is to reach a productivity threshold that allow the process to be profitable. This relies on the construction of efficient cell factories by metabolic engineering and on the development of low-cost production processes by using industrial wastes or cheap and widely available raw materials as feedstock. The non-conventional yeast Yarrowia lipolytica has emerged recently as a potential producer of such metabolites owing its low nutritive requirements, its ability to grow at high cell densities in a bioreactor and ease of genome edition. This review will focus on current knowledge on the synthesis of the most important sugar alcohols and organic acids in Y. lipolytica.


Sign in / Sign up

Export Citation Format

Share Document