scholarly journals Sugar Alcohols and Organic Acids Synthesis in Yarrowia lipolytica: Where Are We?

2020 ◽  
Vol 8 (4) ◽  
pp. 574 ◽  
Author(s):  
Patrick Fickers ◽  
Hairong Cheng ◽  
Carol Sze Ki Lin

Sugar alcohols and organic acids that derive from the metabolism of certain microorganisms have a panoply of applications in agro-food, chemical and pharmaceutical industries. The main challenge in their production is to reach a productivity threshold that allow the process to be profitable. This relies on the construction of efficient cell factories by metabolic engineering and on the development of low-cost production processes by using industrial wastes or cheap and widely available raw materials as feedstock. The non-conventional yeast Yarrowia lipolytica has emerged recently as a potential producer of such metabolites owing its low nutritive requirements, its ability to grow at high cell densities in a bioreactor and ease of genome edition. This review will focus on current knowledge on the synthesis of the most important sugar alcohols and organic acids in Y. lipolytica.

2019 ◽  
Vol 11 (2) ◽  
pp. 537 ◽  
Author(s):  
Ali Naqi ◽  
Jeong Jang

The cement industry is facing numerous challenges in the 21st century due to depleting natural fuel resources, shortage of raw materials, exponentially increasing cement demand and climate linked environmental concerns. Every tonne of ordinary Portland cement (OPC) produced releases an equivalent amount of carbon dioxide to the atmosphere. In this regard, cement manufactured from locally available minerals and industrial wastes that can be blended with OPC as substitute, or full replacement with novel clinkers to reduce the energy requirements is strongly desirable. Reduction in energy consumption and carbon emissions during cement manufacturing can be achieved by introducing alternative cements. The potential of alternative cements as a replacement of conventional OPC can only be fully realized through detailed investigation of binder properties with modern technologies. Seven prominent alternative cement types are considered in this study and their current position compared to OPC has been discussed. The study provides a comprehensive analysis of options for future cements, and an up-to-date summary of the different alternative fuels and binders that can be used in cement production to mitigate carbon dioxide emissions. In addition, the practicalities and benefits of producing the low-cost materials to meet the increasing cement demand are discussed.


2020 ◽  
Author(s):  
Ashish Prabhu ◽  
Dominic J Thomas ◽  
Rodrigo Ledesma- Amaro ◽  
Gary A Leeke ◽  
Angel Medina Vaya ◽  
...  

Abstract Background: Xylitol is a commercially important chemical with multiple applications in the food and pharmaceutical industries. According to the US Department of Energy, xylitol is one of the top twelve platform chemicals that can be produced from biomass. The chemical method for xylitol synthesis is however expensive and energy intensive. In contrast, the biological route using microbial cell factories offers a potential cost-effective alternative process. The bioprocess occurs under ambient conditions and makes use of biocatalysts and biomass which can be sourced from renewable carbon originating from a variety of cheap waste feedstocks. Result: In this study, biotransformation of xylose to xylitol was investigated using Yarrowia lipolytica an oleaginous yeast which was firstly grown on a glycerol/glucose for screening of co-substrate, followed by media optimisation in shake flask, scale up in bioreactor and downstream processing of xylitol. A two-step medium optimization was employed using central composite design and artificial neural network coupled with genetic algorithm. The yeast amassed a concentration of 53.2 g/L xylitol using pure glycerol (PG) and xylose with a bioconversion yield of 0.97 g/g. Similar results were obtained when PG was substituted with crude glycerol (CG) from the biodiesel industry (titer: 50.5 g/L; yield: 0.92 g/g). Even when xylose from sugarcane bagasse hydrolysate was used as opposed to pure xylose, a xylitol yield of 0.54 g/g was achieved. Xylitol was successfully crystallized from PG/xylose and CG /xylose fermentation broths with a recovery of 39.5 and 35.3%, respectively. Conclusion: To the best of the author’s knowledge, this study demonstrates for the first time the potential of using Y. lipolytica as a microbial cell factory for xylitol synthesis from inexpensive feedstocks. The results obtained are competitive with other xylitol producing organisms.


2021 ◽  
Vol 12 (1) ◽  
pp. 1185-1207

The standard operating procedure adopted to health and safety standards for food, beverage, and drug manufacturers are the most priority requirements to keep the business of feeding and healing society on the right track. Biolubricants used in particular should never be allowed to contaminate the raw materials, intermediates, and finished products. The consequences of biolubricant-contaminated products are rarely more acute than in the food processing industry. Therefore the food processing industry presents unique challenges to lubricant formulation engineers, lubricant marketers, plant lubrication engineers, and equipment designers. The food processing and pharmaceutical industries face additional challenges in selecting optimal food-grade biolubricants. Food-grade biolubricants used in these industries have specific requirements, protocols, and performance expectations that exceed typical industrial lubrications. Biolubricants formulated from biobased resources are a new trend in “green” food-grade biolubricants due to their low-cost renewable natural raw materials, biodegradability, environmental friendliness, low toxicity besides their excellent lubrication properties. In this review, the discussion will focus on the future trends, challenges, and prospects of green food-grade biolubricants applicable to the food, beverage, and drug manufacturing industries.


2021 ◽  
Vol 51 (4) ◽  
Author(s):  
Fabiane Ferreira dos Santos ◽  
Karine Marques Lento de Freitas ◽  
Adejanildo da Silva Pereira ◽  
Gizele Cardoso Fontes-Sant’Ana ◽  
Maria Helena Miguez da Rocha-Leão ◽  
...  

ABSTRACT: A synthetic medium containing glucose, glycerol, yeast extract (YE), and ammonium sulfate (AS) was compared to several low-cost media in their ability to produce high emulsification index (EI). The goal was to reduce the production costs of an emulsifier with application in food oil-in-water emulsions. To this end, agro-industrial by-products were screened for bioemulsifier production from Yarrowia lipolytica. The statistical analysis showed that the EIs of media containing residual frying oil from palm oil (RFO_palm) or soybean oil (RFO_soy), residual liquid from butter production (butter whey, BWhey) or cheese production (cheese whey, CWhey), supplemented with YE and AS were similar to the EI of the synthetic medium. The replacement of YE by corn steep liquor (CSL) also resulted in similar EI, except for RFO_soy. BWhey was tested with CSL without AS and similar EI (66.8%) was detected in comparison to that of the same medium with AS (66.3%). The cell-free broth obtained after Y. lipolytica growth in BWhey+CSL was successfully used to obtain vegetable oil-in-water emulsions indicating its potential application in food products.


mSystems ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Tiago M. Martins ◽  
Celso Martins ◽  
Paula Guedes ◽  
Cristina Silva Pereira

ABSTRACT In fungi, salicylate catabolism was believed to proceed only through the catechol branch of the 3-oxoadipate pathway, as shown, e.g., in Aspergillus nidulans. However, the observation of a transient accumulation of gentisate upon the cultivation of Aspergillus terreus in salicylate medium questions this concept. To address this, we have run a comparative analysis of the transcriptome of these two species after growth in salicylate using acetate as a control condition. The results revealed the high complexity of the salicylate metabolism in A. terreus with the concomitant positive regulation of several pathways for the catabolism of aromatic compounds. This included the unexpected joint action of two pathways—3-hydroxyanthranilate and nicotinate—possibly crucial for the catabolism of aromatics in this fungus. Importantly, the 3-hydroxyanthranilate catabolic pathway in fungi is described here for the first time, whereas new genes participating in the nicotinate metabolism are also proposed. The transcriptome analysis showed also for the two species an intimate relationship between salicylate catabolism and secondary metabolism. This study emphasizes that the central pathways for the catabolism of aromatic hydrocarbons in fungi hold many mysteries yet to be discovered. IMPORTANCE Aspergilli are versatile cell factories used in industry for the production of organic acids, enzymes, and pharmaceutical drugs. To date, bio-based production of organic acids relies on food substrates. These processes are currently being challenged to switch to renewable nonfood raw materials—a reality that should inspire the use of lignin-derived aromatic monomers. In this context, aspergilli emerge at the forefront of future bio-based approaches due to their industrial relevance and recognized prolific catabolism of aromatic compounds. Notwithstanding considerable advances in the field, there are still important knowledge gaps in the central catabolism of aromatic hydrocarbons in fungi. Here, we disclose a novel central pathway, 3-hydroxyanthranilate, defying previously established ideas on the central metabolism of the aromatic amino acid tryptophan in Ascomycota. We also observe that the catabolism of the aromatic salicylate greatly activated the secondary metabolism, furthering the significance of using lignin-derived aromatic hydrocarbons as a distinctive biomass source.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1345
Author(s):  
Md. Saifur Rahman ◽  
Md. Saif Hasan ◽  
Ashis Sutradhar Nitai ◽  
Sunghyun Nam ◽  
Aneek Krishna Karmakar ◽  
...  

Carboxymethyl cellulose (CMC) is one of the most promising cellulose derivatives. Due to its characteristic surface properties, mechanical strength, tunable hydrophilicity, viscous properties, availability and abundance of raw materials, low-cost synthesis process, and likewise many contrasting aspects, it is now widely used in various advanced application fields, for example, food, paper, textile, and pharmaceutical industries, biomedical engineering, wastewater treatment, energy production, and storage energy production, and storage and so on. Many research articles have been reported on CMC, depending on their sources and application fields. Thus, a comprehensive and well-organized review is in great demand that can provide an up-to-date and in-depth review on CMC. Herein, this review aims to provide compact information of the synthesis to the advanced applications of this material in various fields. Finally, this article covers the insights of future CMC research that could guide researchers working in this prominent field.


2020 ◽  
Vol 12 (4) ◽  
pp. 1398 ◽  
Author(s):  
Sotiris I. Patsios ◽  
Anna Dedousi ◽  
Evangelia Ν. Sossidou ◽  
Antonios Zdragas

Proteins are essential constituents of animal feeds, which comprise mainly vegetable protein (e.g., soybean meal), which is produced and transported globally. The decoupling of protein-production and livestock-growth areas results in protein deficiencies in certain parts of the world, and in significant environmental stress. Alternative, more sustainable protein feeds are necessary to meet the increasing needs, and to decrease the environmental footprint of animal products. Yeast Single Cell Proteins (SCP), produced locally using various agro-industrial by-product streams, have significant potential as alternative animal feed protein. Particularly, Yarrowia lipolytica, an oleaginous, non-pathogenic microorganism has been characterized as a “workhorse” in biotechnological studies, drawing the attention of many researchers. The present review summarizes available resources on critical issues concerning the applicability and commercialization of Yarrowia lipolytica as an environment-friendly protein source for animal feed. It discusses the sustainability of the yeast SCP production process, it presents the recent advances concerning Yarrowia lipolytica cultivation on low-cost agro-industrial by-products, and it stresses the effects on the health and welfare of productive animals due to the inclusion of Yarrowia lipolytica in their diet. The data presented in this study should facilitate relative research advancement and the commercialization of Yarrowia lipolytica’s use as an alternative protein source/supplement for animal feeds.


2020 ◽  
Author(s):  
Tiago M. Martins ◽  
Celso Martins ◽  
Cristina Silva Pereira

ABSTRACTIn fungi, salicylate catabolism was believed to proceed only through the catechol branch of the 3-oxoadipate pathway, as shown e.g. in Aspergillus nidulans. However, the observation of a transient accumulation of gentisate upon cultivation of Aspergillus terreus in salicylate media questions this concept. To address this we have run a comparative analysis of the transcriptome of these two species after growth in salicylate using acetate as a control condition. The results revealed the high complexity of the salicylate metabolism in A. terreus with the concomitant positive regulation of several pathways for the catabolism of aromatic compounds. This included the unexpected joint action of two pathways: the nicotinate and the 3-hydroxyanthranilate, possibly crucial for the catabolism of aromatics in this fungus. New genes participating in the nicotinate metabolism are here proposed, whereas the 3-hydroxyanthranilate catabolic pathway in fungi is described for the first time. The transcriptome analysis showed also for the two species an intimate relationship between salicylate catabolism and secondary metabolism. This study emphasizes that the central pathways for the catabolism of aromatic hydrocarbons in fungi hold many mysteries yet to be discovered.IMPORTANCEAspergilli are versatile cell factories used in industry for production of organic acids, enzymes and pharmaceutical drugs. To date, organic acids bio-based production relies on food substrates. These processes are currently being challenged to switch to renewable non-food raw materials; a reality that should inspire the use of lignin derived aromatic monomers. In this context, Aspergilli emerge at the forefront of future bio-based approaches due to their industrial relevance and recognized prolific catabolism of aromatic compounds. Notwithstanding considerable advances in the field, there are still important knowledge gaps in the central catabolism of aromatic hydrocarbons in fungi. Here, we disclosed a novel central pathway, defying previous established ideas on the central metabolism of the aromatic amino acid tryptophan in Ascomycota. We also observed that the catabolism of the aromatic salicylate greatly activated the secondary metabolism, furthering the significance of using lignin derived aromatic hydrocarbons as a distinctive biomass source.


2020 ◽  
Vol 20 (6) ◽  
Author(s):  
Feng Yao ◽  
Shun-Cheng Liu ◽  
Dan-Ni Wang ◽  
Zhi-Jie Liu ◽  
Qiang Hua ◽  
...  

ABSTRACT Limonene, a valuable cyclic monoterpene, has been broadly studied in recent decades due to its wide application in the food, cosmetics and pharmaceutical industries. Engineering of the yeast Yarrowia lipolytica for fermentation of renewable biomass lignocellulosic hydrolysate may reduce the cost and improve the economics of bioconversion for the production of limonene. The aim of this study was to engineer Y. lipolytica to produce limonene from xylose and low-cost lignocellulosic feedstock. The heterologous genes XR and XDH and native gene XK encoding xylose assimilation enzymes, along with the heterologous genes tNDPS1 and tLS encoding orthogonal limonene biosynthetic enzymes, were introduced into the Po1f strain to facilitate xylose fermentation to limonene. The initially developed strain produced 0.44 mg/L of limonene in 72 h with 20 g/L of xylose. Overexpression of genes from the mevalonate pathway, including HMG1 and ERG12, significantly increased limonene production from xylose to ∼9.00 mg/L in 72 h. Furthermore, limonene production peaked at 20.57 mg/L with 50% hydrolysate after 72 h when detoxified lignocellulosic hydrolysate was used. This study is the first to report limonene production by yeast from lignocellulosic feedstock, and these results indicate the initial steps toward economical and sustainable production of isoprenoids from renewable biomass by engineered Y. lipolytica.


Author(s):  
Liu-Jing Wei ◽  
Xuan Cao ◽  
Jing-Jing Liu ◽  
Suryang Kwak ◽  
Yong-Su Jin ◽  
...  

Squalene is a triterpenoid serving as an ingredient of various products in the food, cosmetic, pharmaceutical industries. The oleaginous yeast Yarrowia lipolytica offers enormous potential as a microbial chassis for the production of terpenoids, such as carotenoid, limonene, linalool, and farnesene as the yeast provides ample storage space for hydrophobic products. Here we present a metabolic design that allows the enhanced accumulation of squalene in Y. lipolytica . First, we improved squalene accumulation in Y. lipolytica by overexpressing the genes (ERG, HMG) coding for the mevalonate pathway enzymes. Second, we increased the production of lipid where squalene is accumulated by overexpressing DGA1 encoding for diacylglycerol acyltransferase and deleting PEX10 for peroxisomal membrane E3 ubiquitin ligase. Third, we deleted URE2 coding for a transcriptional regulator in charge of nitrogen catabolite repression (NCR) to induce lipid accumulation regardless of carbon to nitrogen ratio in culture media. The resulting engineered Y. lipolytica exhibited a 115-fold higher squalene content (22.0 mg/g DCW) than a parental strain. These results suggest that the biological function of Ure2p in Y. lipolytica is similar to that in S. cerevisiae , and its deletion can be utilized to enhance the production of hydrophobic target products in oleaginous yeast strains. IMPORTANCE This study demonstrated a novel strategy for increasing squalene production in Y. lipolytica . URE2, a bifunctional protein that is involved in both nitrogen catabolite repression and oxidative stress response, was identified and demonstrated correlation to squalene production. The data suggest that double deletion of PEX10 and URE2 can serve as a positive synergistic effect to help yeast cells on boosting squalene production. This discovery can be combined with other strategies to engineer cell factories to efficiently produce terpenoid in the future.


Sign in / Sign up

Export Citation Format

Share Document