Enhanced thermoelectric performance of higher manganese silicides by shock-induced high-density dislocations

2019 ◽  
Vol 7 (7) ◽  
pp. 3384-3390 ◽  
Author(s):  
Zhipeng Gao ◽  
Zhengwei Xiong ◽  
Jun Li ◽  
Chengjia Lu ◽  
Ganghua Zhang ◽  
...  

The shock-compression is a novel method to generate high-density dislocations in the thermoelectric materials and to enhance their thermoelectric properties.

2020 ◽  
Vol 49 (18) ◽  
pp. 6135-6144
Author(s):  
Shaochang Song ◽  
Chun-Wan Timothy Lo ◽  
Masoud Aminzare ◽  
Yu-Chih Tseng ◽  
Suneesh Meledath Valiyaveettil ◽  
...  

SnTe-based thermoelectric materials are studied as potential substitutes for PbTe. Ge and Bi substitutions combined with the Cu2Te alloying can significantly improve thermoelectric properties of SnTe as shown for (Sn0.5Ge0.5)0.91Bi0.06Te(Cu2Te)0.05.


2020 ◽  
Vol 59 (1) ◽  
pp. 371-378
Author(s):  
Manal M. Alsalama ◽  
Hicham Hamoudi ◽  
Ahmed Abdala ◽  
Zafar K. Ghouri ◽  
Khaled M. Youssef

AbstractThermoelectric materials have long been proven to be effective in converting heat energy into electricity and vice versa. Since semiconductors have been used in the thermoelectric field, much work has been done to improve their efficiency. The interrelation between their thermoelectric physical parameters (Seebeck coefficient, electrical conductivity, and thermal conductivity) required special tailoring in order to get the maximum improvement in their performance. Various approaches have been reported in the research for developing thermoelectric performance, including doping and alloying, nanostructuring, and nanocompositing. Among different types of thermoelectric materials, layered chalcogenide materials are unique materials with distinctive properties. They have low self-thermal conductivity, and their layered structure allows them to be modified easily to improve their thermoelectric performance. In this review, basic knowledge of thermoelectric concepts and challenges for enhancing the figure of merit is provided. It discusses briefly different groups of layered chalcogenide thermoelectric materials with their structure and thermoelectric properties. It also reports different approaches in the literature for improving their performance and the recent progress done in this field. It highlights graphene as a promising nano additive to layered chalcogenide materials’ matrix and shows its effect on enhancing their figure of merit.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 453 ◽  
Author(s):  
Xiaofei Sheng ◽  
Zhuhong Li ◽  
Yajuan Cheng

Developing new thermoelectric materials with high performance can broaden the thermoelectric family and is the key to fulfill extreme condition applications. In this work, we proposed two new high-temperature thermoelectric materials—MgV2O5 and CaV2O5—which are derived from the interface engineered V2O5. The electronic and thermoelectric properties of V2O5, MgV2O5, and CaV2O5 were calculated based on first principles and Boltzmann semi-classical transport equations. It was found that although V2O5 possessed a large Seebeck coefficient, its large band gap strongly limited the electrical conductivity, hence hindering it from being good thermoelectric material. With the intercalation of Mg and Ca atoms into the van der Waals interfaces of V2O5, i.e., forming MgV2O5 and CaV2O5, the electronic band gaps could be dramatically reduced down to below 0.1 eV, which is beneficial for electrical conductivity. In MgV2O5 and CaV2O5, the Seebeck coefficient was not largely affected compared to V2O5. Consequently, the thermoelectric figure of merit was expected to be improved noticeably. Moreover, the intercalation of Mg and Ca atoms into the V2O5 van der Waals interfaces enhanced the anisotropic transport and thus provided a possible way for further engineering of their thermoelectric performance by nanostructuring. Our work provided theoretical guidelines for the improvement of thermoelectric performance in layered oxide materials.


2021 ◽  
Vol 33 (7) ◽  
pp. 2170051
Author(s):  
Yu Pan ◽  
Feng‐Ren Fan ◽  
Xiaochen Hong ◽  
Bin He ◽  
Congcong Le ◽  
...  

Author(s):  
Gautam Sharma ◽  
Vineet Kumar Pandey ◽  
Shouvik Datta ◽  
Prasenjit Ghosh

Thermoelectric materials are used for conversion of waste heat to electrical energy. The transport coefficients that determine their thermoelectric properties depend on the band structure and the relaxation time of...


2009 ◽  
Vol 24 (2) ◽  
pp. 430-435 ◽  
Author(s):  
D. Li ◽  
H.H. Hng ◽  
J. Ma ◽  
X.Y. Qin

The thermoelectric properties of Nb-doped Zn4Sb3 compounds, (Zn1–xNbx)4Sb3 (x = 0, 0.005, and 0.01), were investigated at temperatures ranging from 300 to 685 K. The results showed that by substituting Zn with Nb, the thermal conductivities of all the Nb-doped compounds were lower than that of the pristine β-Zn4Sb3. Among the compounds studied, the lightly substituted (Zn0.995Nb0.005)4Sb3 compound exhibited the best thermoelectric performance due to the improvement in both its electrical resistivity and thermal conductivity. Its figure of merit, ZT, was greater than the undoped Zn4Sb3 compound for the temperature range investigated. In particular, the ZT of (Zn0.995Nb0.005)4Sb3 reached a value of 1.1 at 680 K, which was 69% greater than that of the undoped Zn4Sb3 obtained in this study.


2005 ◽  
Vol 297-300 ◽  
pp. 875-880
Author(s):  
Cheol Ho Lim ◽  
Ki Tae Kim ◽  
Yong Hwan Kim ◽  
Dong Choul Cho ◽  
Young Sup Lee ◽  
...  

P-type Bi0.5Sb1.5Te3 compounds doped with 3wt% Te were fabricated by spark plasma sintering and their mechanical and thermoelectric properties were investigated. The sintered compounds with the bending strength of more than 50MPa and the figure-of-merit 2.9×10-3/K were obtained by controlling the mixing ratio of large powders (PL) and small powders (PS). Compared with the conventionally prepared single crystal thermoelectric materials, the bending strength was increased up to more than three times and the figure-of-merit Z was similar those of single crystals. It is expected that the mechanical properties could be improved by using hybrid powders without degradation of thermoelectric properties.


2018 ◽  
Vol 6 (15) ◽  
pp. 6493-6502 ◽  
Author(s):  
Rui Chen ◽  
Pengfei Qiu ◽  
Binbin Jiang ◽  
Ping Hu ◽  
Yiming Zhang ◽  
...  

Via introducing Te into the argyrodite-type compound Cu7PSe6, the configurational entropy is increased yielding the significantly enhanced thermoelectric performance.


Sign in / Sign up

Export Citation Format

Share Document