scholarly journals Characterization of bioactive compounds in commercial olive leaf extracts, and olive leaves and their infusions

2019 ◽  
Vol 10 (8) ◽  
pp. 4716-4724 ◽  
Author(s):  
Eduardo Medina ◽  
Concepción Romero ◽  
Pedro García ◽  
Manuel Brenes

A large spectrum of beneficial health properties has been attributed to olive leaves.

Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1268 ◽  
Author(s):  
Annamaria Cedola ◽  
Carmen Palermo ◽  
Diego Centonze ◽  
Matteo Alessandro Del Nobile ◽  
Amalia Conte

Olive leaves are rich in many compounds precious for human health. Due to this property, the current study was aimed to valorize the extract from this by-product in a cereal-based food, very popular all around the world, the “taralli”. To this aim, ultrasound-assisted extraction was applied to dried olive leaves to obtain the extract, used as “taralli” ingredient, instead of white wine. The “taralli” with and without extract was subjected to in vitro digestion to assess the quantity of polyphenolic compounds released in the gastrointestinal tract to become available for absorption. Total content of phenols and flavonoids, as well as the antioxidant capacity, was measured on both cooked and uncooked samples, before and after digestion. In addition, High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) of the three most abundant polyphenols present in olive leaf extracts, such as oleuropein, hydroxytyrosol, and verbascoside, was carried out at the three stages of the digestion process. The results showed that the substitution of white wine with olive leaf extract increased the total content of polyphenols and flavonoids and the antioxidant capacity. Bio-accessibility of the main phenolic compounds demonstrated that oleuropein resisted slightly after gastric digestion but was almost completely degraded in the intestinal phase, while hydroxytyrosol and verbascoside were not resistant to the digestion process from the gastric phase.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Ines Fki ◽  
Sami Sayadi ◽  
Asma Mahmoudi ◽  
Ines Daoued ◽  
Rim Marrekchi ◽  
...  

Oleuropein and hydroxytyrosol, as major compounds of olive leaves, have been reported to exert numerous pharmacological properties, including anticancer, antidiabetic, and anti-inflammatory activities. The purpose of this study is to evaluate and compare the protective effect of oleuropein- and hydroxytyrosol-rich extracts, derived from olive leaves, on high-fat diet-induced lipid metabolism disturbance and liver injury in rats. In this respect, four groups of male rats (8 per group) were used: control group (Control), group treated with high-fat diet (HFD), group treated with HFD and oleuropein (HFD + OLE), and group treated with HFD and hydroxytyrosol (HFD + HYD). The current research showed that the treatment with the HFD increased the body weight and adipose tissue mass in male rats. Moreover, the plasma levels of triglycerides, total cholesterol, LDL-cholesterol, AST, ALT, LDH, and TNF-α were also raised. The hepatic immunohistochemical analysis revealed a significant increase in the expression of inflammatory genes (COX-2, NF-κB, and TNF-α). Equally, it showed a rise of the apoptotic markers (a decrease in the expression of the Bcl-2 and an increase of the P53). In addition, the oral administration of oleuropein- and hydroxytyrosol-rich olive leaf extracts at 16 mg/kg similarly reduced the body weight and adipose tissue mass and improved the lipid profile. Moreover, these extracts, mainly the hydroxytyrosol-rich extract, reduced the elevated liver enzymes, enhanced the antioxidant status, and attenuated the liver inflammation and apoptosis. These findings suggest that the oleuropein- and hydroxytyrosol-rich olive leaf extracts possessed hypolipidemic and hepatoprotective effects against the HFD-induced metabolic disorders by enhancing the antioxidative defense system and blocking the expression of the proteins involved in inflammation and liver damage.


Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 804
Author(s):  
Amani Taamalli ◽  
Anouar Feriani ◽  
Jesús Lozano-Sanchez ◽  
Lakhdar Ghazouani ◽  
Afoua El Mufti ◽  
...  

Virgin olive oil has demonstrated its effective activity against oxidative stress. However, data on the bioactive effect of olive leaves or their major constituents on the liver are scarce. The present research work was conducted to evaluate the hepatoprotective effects of supercritical carbon dioxide (SC-CO2) extracts from fresh and dried olive leaves on hepatotoxicity caused by carbon tetrachloride (CCl4) in rat models. For this purpose, healthy albino rats of 180–250 g weight were used. The assessment of biochemical markers was carried out on blood and liver tissue. Then, a histopathological study was carried out on liver tissue. The obtained results showed that fresh and dried olive leaf extracts ameliorate the perturbed biochemical parameters caused by CCl4 treatment. Furthermore, the results registered for the histopathological study are in accordance with the biochemical parameters and the protective capacity of SC-CO2 extracts against DNA damage, indicating that olive leaf extracts helped to improve liver fibrosis caused by CCl4 treatment.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2447
Author(s):  
María Esther Martínez-Navarro ◽  
Cristina Cebrián-Tarancón ◽  
Gonzalo L. Alonso ◽  
María Rosario Salinas

Olive leaves are still considered waste in the oil industry; however, the leaves have a content of oleuropein and other bioactive compounds that gives them great potential to be transformed into by-products. The most appropriate moment along an agronomic cycle (November 2019 to October 2020) has been evaluated to take advantage of this potential of the olive leaves varieties of Picual, Cornicabra and Manzanilla. In addition, factors that affect the content of phenolic compounds such as absolute maximum and minimum temperatures, relative humidity, sunshine hours, rainfall, differential of temperatures and mineral nutrition have been studied. The results show that the pruning season was the best time to take advantage of the olive leaf due to its high oleuropein content, especially in Picual and Manzanilla. The variety was the factor that most affected all the phenolic compounds studied, while the absolute minimum temperature factor notably affected verbascoside. Particular mineral nutrients, such as Mg and Fe, turned out to be most useful for differentiating locations. The content of verbascoside and hydroxytyrosol was also affected by agronomic conditions (location/conventional or ecological).


2016 ◽  
Vol 07 (02) ◽  
pp. 103-109 ◽  
Author(s):  
Nathalia F. Naspolini ◽  
◽  
Mariana P. Seljan ◽  
Monica C.P. Santos ◽  
Édira C.B.A. Gonçalves

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1962
Author(s):  
Elda Chiaino ◽  
Matteo Micucci ◽  
Roberta Budriesi ◽  
Laura Beatrice Mattioli ◽  
Carla Marzetti ◽  
...  

Compounds of natural origin may constitute an interesting tool for the treatment of neuroblastoma, the most prevalent extracranial solid tumor in children. PRES is a commercially available food supplement, composed of a 13:2 (w/w) extracts mix of Olea europaea L. leaves (OE) and Hibiscus sabdariffa L. flowers (HS). Its potential towards neuroblastoma is still unexplored and was thus investigated in human neuroblastoma SH-SY5Y cells. PRES decreased the viability of cells in a concentration-dependent fashion (24 h IC50 247.2 ± 31.8 µg/mL). Cytotoxicity was accompanied by an increase in early and late apoptotic cells (AV-PI assay) and sub G0/G1 cells (cell cycle analysis), ROS formation, reduction in mitochondrial membrane potential, and caspases activities. The ROS scavenger N-acetyl-L-cysteine reverted the cytotoxic effects of PRES, suggesting a key role played by ROS in PRES-mediated SH-SY5Y cell death. Finally, the effects of OE and HS extracts were singularly tested and compared to those of the corresponding mixture. OE- or HS-mediated cytotoxicity was always significantly lower than that caused by PRES, suggesting a synergic effect. In conclusion, the present findings highlight the potential of PRES for the treatment of neuroblastoma and offers the basis for a further characterization of the mechanisms underlying its effects.


2020 ◽  
Vol 14 (2) ◽  
pp. 133-141
Author(s):  
Zeynep Kalaycıoğlu ◽  
Merve Kopar ◽  
F. Bedia Erim

Oleuropein, the major active compound in olive leaf, has been of considerable interest for its many health benefits. This work aims the determination of oleuropein in olive leaves from Turkey by a rapid and simple capillary electrophoretic method, and then to correlate the oleuropein amounts and the bioactivities of olive leaf extracts. The optimal separation medium was composed of 30 mmol/L borate (pH: 9.6), 25 mmol/L2-hydroxypropyl-β-cyclodextrin (2-HP-β-CD), 10% (v/v) methanol. Moreover, olive leaf extracts were examined for antioxidant, antidiabetic, and anti-inflammatory activities. The antioxidant activities were determined by 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity. The antidiabetic activities were predicted using α-glucosidase inhibitory effects. For the anti-inflammatory activities of the extracts, their reduction power of pro-inflammatory tumor necrosis factor (TNF)-alpha were measured. Oleuropein concentration ranged between 11.7-106 mg/g dry leaf. Strong correlations were detected between each biological activity and the oleuropein content of olive leaves


2021 ◽  
Vol 64 (2) ◽  
pp. 113-119
Author(s):  
Mi Hyeon Park ◽  
Doo-Young Kim ◽  
Alfan Danny Arbianto ◽  
Jung-Hee Kim ◽  
Seong Mi Lee ◽  
...  

Author(s):  
Shubhaisi Das ◽  
Sunanda Burman ◽  
Goutam Chandra

Background: The only remedy for up surging problem of antibiotic resistance is the discovery of antibacterial agents of natural origin. Objective: The present study was aimed at finding antibacterial potential of crude and solvent extracts of mature leaves of Plumeria pudica. Methods: Antibacterial activity of three different solvent extracts were evaluated in four human and four fish pathogenic bacteria by measuring the zone of inhibition and determining Minimum Inhibitory Concentration and Minimum Bactericidal Concentration values. Standard antibiotics were used as positive control. Preliminary phytochemical screening of most effective extract i.e., ethyl acetate extract, Fourier Transform Infra Red analysis and GC-MS analysis of the Thin Layer Chromatographic (TLC) fraction of ethyl acetate extract were done meticulously. All experiments were done thrice and analyzed statistically. Results: Crude leaf extracts and solvent extracts caused good inhibition of bacterial growth in all selected bacteria. Ethyl acetate extract showed highest inhibition zones in all tested strains with maximum inhibition (19.50±0.29 mm) in Escherichia coli (MTCC 739). MBC/MIC of the extracts indicated that all three solvent extracts were bactericidal. Preliminary phytochemical tests revealed the presence of tannins, steroids and alkaloids and FT-IR analysis revealed presence of many functional groups namely alcoholic, amide, amine salt and aldehyde groups. From the GC-MS analysis of TLC fraction of ethyl acetate extract five different bioactive compounds e.g., 2,4-ditert –butylphenyl 5-hydroxypentanoate, Oxalic acid; allyl nonyl ester, 7,9-Ditert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione, Dibutyl phthalate and 2,3,5,8-tetramethyl-decane were identified. Conclusion: Leaf extracts of P. pudica contain bioactive compounds that can be used as broad spectrum bactericidal agent.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1299
Author(s):  
Pablo Doménech ◽  
Aleta Duque ◽  
Isabel Higueras ◽  
José Luis Fernández ◽  
Paloma Manzanares

Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.


Sign in / Sign up

Export Citation Format

Share Document