scholarly journals A targeted near-infrared nanoprobe for deep-tissue penetration and imaging of prostate cancer

2021 ◽  
Author(s):  
Mena Asha Krishnan ◽  
Kratika Yadav ◽  
Paul Roach ◽  
Venkatesh Chelvam

Deep tissue penetration of a NIR PSMA-QD655 imaging agent in a 3D prostate cancer platform has been achieved.

Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 360
Author(s):  
Michał Osuchowski ◽  
Filip Osuchowski ◽  
Wojciech Latos ◽  
Aleksandra Kawczyk-Krupka

Photodynamic Therapy (PDT) is a cancer treatment that uses light, a photosensitizer, and oxygen to destroy tumors. This article is a review of approaches to the treatment of prostate cancer applying upconversion nanoparticles (UCNPs). UCNPs have become a phenomenon that are rapidly gaining recognition in medicine. They have proven to be highly selective and specific and present a powerful tool in the diagnosis and treatment of prostate cancer. Prostate cancer is a huge health problem in Western countries. Its early detection can significantly improve patients’ prognosis, but currently used diagnostic methods leave much to be desired. Recently developed methodologies regarding UCNP research between the years 2021 and 2014 for prostate cancer PDT will also be discussed. Current limitations in PDT include tissue irradiation with visible wavelengths that have a short tissue penetration depth. PDT with the objectives to synthesize UCNPs composed of a lanthanide core with a coating of adsorbed dye that will generate fluorescence after excitation with near-infrared light to illuminate deep tissue is a subject of intense research in prostate cancer.


2017 ◽  
Vol 8 (3) ◽  
pp. 1815-1821 ◽  
Author(s):  
Yuqiong Dai ◽  
Hao Sun ◽  
Sunirmal Pal ◽  
Yunlu Zhang ◽  
Sangwoo Park ◽  
...  

Responsive systems sensitive to near-infrared (NIR) light are promising for triggered release due to efficient deep tissue penetration of NIR irradiation relative to higher energy sources (e.g., UV), allowing for spatiotemporal control over triggering events with minimal potential for tissue damage.


2021 ◽  
Author(s):  
◽  
J. A. Parada Peralta

Prostate Cancer is one of the major concern types of cancer among men with respect to incidence and mortality. One relatively recent therapy against it, provided by Nanomedicine, is Nanoparticle mediated Magnetic Hyperthermia, which consists on tumor heating when exposed to an Alternating Magnetic Field in order to inhibit tumor growth (around 42 °C) (and make tumor sensible to other therapies: synergia) or to cause cancer cell apoptosis (greater temperature than 42°C). This procedure has several advantages like deep-tissue-penetration, targeted heating, low toxicity by Nanoparticles, and others. To this treatment, some of the Magnetic Nanoparticle properties are fundamental to its success, principaly the size, morphology, etc. Here, therefore, the relationship between the size of the employed Nanoparticles and the Tumor Growth Inhibition that cause is reviewed when treating Prostate Cancer tumors on mice models by Magnetic Hyperthermia.


2019 ◽  
Vol 26 (21) ◽  
pp. 4029-4041 ◽  
Author(s):  
Hai-Yan Wang ◽  
Huisheng Zhang ◽  
Siping Chen ◽  
Yi Liu

Luminescence bioimaging is widely used for noninvasive monitoring of biological targets in real-time with high temporal and spatial resolution. For efficient bioimaging in vivo, it is essential to develop smart organic dye platforms. Fluorescein (FL), a traditional dye, has been widely used in the biological and clinical studies. However, visible excitation and emission limited their further application for in vivo bioimaging. Nearinfrared (NIR) dyes display advantages of bioimaging because of their minimum absorption and photo-damage to biological samples, as well as deep tissue penetration and low auto-luminescence from background in the living system. Thus, some great developments of near-infrared fluorescein-inspired dyes have emerged for bioapplication in vitro and in vivo. In this review, we highlight the advances in the development of the near-infrared chemodosimeters for detection and bioimaging based on the modification of fluoresceininspired dyes naphtho-fluorescein (NPF) and cyanine-fluorescein (Cy-FL).


Author(s):  
Yaxi Li ◽  
Hongli Zhou ◽  
Renzhe Bi ◽  
Xiuting Li ◽  
Menglei Zha ◽  
...  

Fluorescence imaging in the second near-infrared window (NIR-II) has been an emerging technique in diverse in vivo applications with high sensitivity/resolution and deep tissue penetration. To date, the designing principle...


2020 ◽  
Vol 5 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Debabrata Maiti ◽  
Jing Zhong ◽  
Zheng Zhang ◽  
Hailin Zhou ◽  
Saisai Xion ◽  
...  

X-rays with high deep tissue penetration could be acted as an excellent excited light source for enhanced photodynamic therapy (PDT), avoiding the weak penetration of near-infrared light and further improving the therapeutic efficiency of PDT.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liang Chen ◽  
Wenxing Wang ◽  
Jia Tian ◽  
Fanxing Bu ◽  
Tiancong Zhao ◽  
...  

AbstractThe potential applications of covalent organic frameworks (COFs) can be further developed by encapsulating functional nanoparticles within the frameworks. However, the synthesis of monodispersed core@shell structured COF nanocomposites without agglomeration remains a significant challenge. Herein, we present a versatile dual-ligand assistant strategy for interfacial growth of COFs on the functional nanoparticles with abundant physicochemical properties. Regardless of the composition, geometry or surface properties of the core, the obtained core@shell structured nanocomposites with controllable shell-thickness are very uniform without agglomeration. The derived bowl-shape, yolk@shell, core@satellites@shell nanostructures can also be fabricated delicately. As a promising type of photosensitizer for photodynamic therapy (PDT), the porphyrin-based COFs were grown onto upconversion nanoparticles (UCNPs). With the assistance of the near-infrared (NIR) to visible optical property of UCNPs core and the intrinsic porosity of COF shell, the core@shell nanocomposites can be applied as a nanoplatform for NIR-activated PDT with deep tissue penetration and chemotherapeutic drug delivery.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Yu-Qi Liu ◽  
Li-Ying Qin ◽  
Hong-Jiao Li ◽  
Yi-Xi Wang ◽  
Rui Zhang ◽  
...  

With the excellent ability to transform near-infrared light to localized visible or UV light, thereby achieving deep tissue penetration, lanthanide ion-doped upconversion nanoparticles (UCNP) have emerged as one of the most striking nanoscale materials for more effective and safer cancer treatment. Up to now, UCNPs combined with photosensitive components have been widely used in the delivery of chemotherapy drugs, photodynamic therapy and photothermal therapy. Applications in these directions are reviewed in this article. We also highlight microenvironmental tumor monitoring and precise targeted therapies. Then we briefly summarize some new trends and the existing challenges for UCNPs. We hope this review can provide new ideas for future cancer treatment based on UCNPs.


2020 ◽  
Vol 8 (14) ◽  
pp. 2895-2908 ◽  
Author(s):  
Jiabao Pan ◽  
Ancheng Ouyang ◽  
Wenjuan Fang ◽  
Guanghui Cheng ◽  
Wei Liu ◽  
...  

Tumor-sensitive J-aggregated self-assembly silicon phthalocyanine nanoparticles as synergistic anticancer organic phototheranostic nanomedicines with high tissue penetration.


Sign in / Sign up

Export Citation Format

Share Document