Immunomodulatory potential of Chitosan-based materials for cancer therapy: a systematic review of in vitro, in vivo and clinical studies

2021 ◽  
Author(s):  
Beatriz Vargas Lima ◽  
Maria Oliveira ◽  
Mario Adolfo Barbosa ◽  
Raquel M. Gonçalves ◽  
Flávia Castro

Chitosan (Ch) has recently been used in different studies as a vaccine adjuvant with ability to modulate the tumor microenvironment (TME). This systematic review aims to elucidate on the added...

2019 ◽  
Vol 4 (4) ◽  
pp. 890-901 ◽  
Author(s):  
Ruijie Liang ◽  
Yu Chen ◽  
Minfeng Huo ◽  
Jun Zhang ◽  
Yongsheng Li

Tumor microenvironment (TME)-specific nanocatalysts for augmented synergistic chemodrug and chemodynamic cancer therapy have been constructed, which feature an optimized effect on TME features. Systematic in vitro and in vivo tests have revealed the high therapeutic activity of the nanocatalysts for substantially suppressing tumor growth.


2021 ◽  
Author(s):  
Zhenzhen Yang ◽  
Anli Yang ◽  
Wang Ma ◽  
Kai Ma ◽  
Ya-Kun Lv ◽  
...  

Abstract Background: Reactive oxygen species (ROS) have been widely studied for cancer therapy. Nevertheless, instability and aspecific damages to cellular biomolecules limited the application effect. Recently, significant research efforts have been witnessed in the flourishing area of metal nanoclusters (NCs) with atomically precise structures for targeted release of ROS but few achieved success towards targeting tumor microenvironment.Results: In this work, we reported an atomically precise nanocluster Cu6(C4H3N2S)6 (Cu6NC), which could slowly break and generate ROS once encountered with acidic. The as-prepared Cu6NC demonstrated high biological safety and efficient chemodynamic anti-tumor properties. Moreover, Cu6NC enabled transient release of ROS and contained targeting behavior led by the tumor microenvironment. Both in vitro and in vivo experiments confirmed that Cu6NC demonstrated a low cytotoxicity for normal cells, while presented high cytotoxicity for tumor cells with a concentration-dependent manner.Conclusions: This work not only reported a promising candidate for chemodynamic cancer therapy, but also paved the route to address clinical issues at the atomic level.


2022 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Inês Francisco ◽  
Anabela Baptista Paula ◽  
Madalena Ribeiro ◽  
Filipa Marques ◽  
Raquel Travassos ◽  
...  

Three-dimensional (3D) resin medical-dental devices have been increasingly used in recent years after the emergence of digital technologies. In Orthodontics, therapies with aligners have gained popularity, mainly due to the aggressive promotion policies developed by the industry. However, their systemic effects are largely unknown, with few studies evaluating the systemic toxicity of these materials. The release of bisphenol A and other residual monomers have cytotoxic, genotoxic, and estrogenic effects. This systematic review aims to analyze the release of toxic substances from 3D resins used in Orthodontics and their toxic systemic effects systematically. The PICO question asked was, “Does the use of 3D resins in orthodontic devices induce cytotoxic effects or changes in estrogen levels?”. The search was carried out in several databases and according to PRISMA guidelines. In vitro, in vivo, and clinical studies were included. The in vitro studies’ risk of bias was assessed using the guidelines for the reporting of pre-clinical studies on dental materials by Faggion Jr. For the in vivo studies, the SYRCLE risk of bias tool was used, and for the clinical studies, the Cochrane tool. A total of 400 articles retrieved from the databases were initially scrutinized. Fourteen articles were included for qualitative analysis. The risk of bias was considered medium to high. Cytotoxic effects or estrogen levels cannot be confirmed based on the limited preliminary evidence given by in vitro studies. Evidence of the release of bisphenol A and other monomers from 3D resin devices, either in vitro or clinical studies, remains ambiguous. The few robust results in the current literature demonstrate the absolute need for further studies, especially given the possible implications for the young patient’s fertility, which constitutes one of the largest groups of patients using these orthodontic devices.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenzhen Yang ◽  
Anli Yang ◽  
Wang Ma ◽  
Kai Ma ◽  
Ya-Kun Lv ◽  
...  

Abstract Background Reactive oxygen species (ROS) have been widely studied for cancer therapy. Nevertheless, instability and aspecific damages to cellular biomolecules limit the application effect. Recently, significant research efforts have been witnessed in the flourishing area of metal nanoclusters (NCs) with atomically precise structures for targeted release of ROS but few achieved success towards targeting tumor microenvironment. Results In this work, we reported an atomically precise nanocluster Cu6(C4H3N2S)6 (Cu6NC), which could slowly break and generate ROS once encountered with acidic. The as-prepared Cu6NC demonstrated high biological safety and efficient chemodynamic anti-tumor properties. Moreover, Cu6NC enabled transient release of ROS and contained targeting behavior led by the tumor microenvironment. Both in vitro and in vivo experiments confirmed that Cu6NC demonstrated a low cytotoxicity for normal cells, while presented high cytotoxicity for tumor cells with a concentration-dependent manner. Conclusions This work not only reported a promising candidate for chemodynamic cancer therapy, but also paved the route to address clinical issues at the atomic level. Graphical Abstract


2019 ◽  
Vol 14 (6) ◽  
pp. 504-518 ◽  
Author(s):  
Dilcele Silva Moreira Dziedzic ◽  
Bassam Felipe Mogharbel ◽  
Priscila Elias Ferreira ◽  
Ana Carolina Irioda ◽  
Katherine Athayde Teixeira de Carvalho

This systematic review evaluated the transplantation of cells derived from adipose tissue for applications in dentistry. SCOPUS, PUBMED and LILACS databases were searched for in vitro studies and pre-clinical animal model studies using the keywords “ADIPOSE”, “CELLS”, and “PERIODONTAL”, with the Boolean operator “AND”. A total of 160 titles and abstracts were identified, and 29 publications met the inclusion criteria, 14 in vitro and 15 in vivo studies. In vitro studies demonstrated that adipose- derived cells stimulate neovascularization, have osteogenic and odontogenic potential; besides adhesion, proliferation and differentiation on probable cell carriers. Preclinical studies described improvement of bone and periodontal healing with the association of adipose-derived cells and the carrier materials tested: Platelet Rich Plasma, Fibrin, Collagen and Synthetic polymer. There is evidence from the current in vitro and in vivo data indicating that adipose-derived cells may contribute to bone and periodontal regeneration. The small quantity of studies and the large variation on study designs, from animal models, cell sources and defect morphology, did not favor a meta-analysis. Additional studies need to be conducted to investigate the regeneration variability and the mechanisms of cell participation in the processes. An overview of animal models, cell sources, and scaffolds, as well as new perspectives are provided for future bone and periodontal regeneration study designs.


2018 ◽  
Vol 18 (7) ◽  
pp. 985-992 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Ertan Kucuksayan ◽  
Rana Cagla Akduman ◽  
Tomris Ozben

This systematic review aims to elucidate the role of melatonin (N-acetyl-5-metoxy-tryptamine) (MLT) in the prevention and treatment of cancer. MLT is a pineal gland secretory product, an evolutionarily highly conserved molecule; it is also an antioxidant and an impressive protector of mitochondrial bioenergetic activity. MLT is characterized by an ample range of activities, modulating the physiology and molecular biology of the cell. Its physiological functions relate principally to the interaction of G Protein-Coupled MT1 and MT2 trans-membrane receptors (GPCRs), a family of guanidine triphosphate binding proteins. MLT has been demonstrated to suppress the growth of various tumours both, in vivo and in vitro. In this review, we analyze in depth, the antioxidant activity of melatonin, aiming to illustrate the cancer treatment potential of the molecule, by limiting or reversing the changes occurring during cancer development and growth.


2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


Author(s):  
Mohammad Ghiasloo ◽  
Laura De Wilde ◽  
Kashika Singh ◽  
Patrick Tonnard ◽  
Alexis Verpaele ◽  
...  

Abstract Background Recent evidence confirms that mesenchymal stem cells (MSCs) facilitate angiogenesis mainly through paracrine function. Extracellular vesicles (EVs) are regarded as key components of the cell secretome, possessing functional properties of their source cells. Subsequently, MSC-EVs have emerged as a novel cell-free approach to improve fat graft retention rate. Objectives To provide a systematic review of all studies reporting the use of MSC-EVs to improve graft retention rate. Methods A systematic search was undertaken using the Embase, PubMed and the Cochrane Central Register of Controlled Trials databases. Outcome measures included donor/receptor organism of the fat graft, study model, intervention groups, evaluation intervals, EV research data, in vitro and in vivo results. Results Of the total 1717 articles, 62 full-texts were screened. Seven studies reporting on 294mice were included. Overall, EV treated groups showed higher graft retention rates compared to untreated groups. Notably, retention rate was similar following EV- and MSC-treatment. In addition to reduced inflammation, graft enrichment with EVs resulted in early revascularization and better graft integrity. Interestingly, hypoxic preconditioning of MSCs improved their beneficial paracrine effects and led to a more proangiogenic EV population, as observed by both in vitro and in vivo results. Conclusions MSC-EVs appear to offer an interesting cell-free alternative to improve fat graft survival. While their clinical relevance remains to be determined, it is clear that not the cells, but their secretome is essential for graft survival. Thus, a paradigm shift from cell-assisted lipotransfer towards ‘secretome-assisted lipotransfer’ is well on its way.


2021 ◽  
Vol 1 (1) ◽  
pp. 84-95
Author(s):  
Patience O. Obi ◽  
Jennifer E. Kent ◽  
Maya M. Jeyaraman ◽  
Nicole Askin ◽  
Taiana M. Pierdoná ◽  
...  

Asthma is the most common pediatric disease, characterized by chronic airway inflammation and airway hyperresponsiveness. There are several management options for asthma, but no specific treatment. Extracellular vesicles (EVs) are powerful cellular mediators of endocrine, autocrine and paracrine signalling, and can modulate biophysiological function in vitro and in vivo. A thorough investigation of therapeutic effects of EVs in asthma has not been conducted. Therefore, this systematic review is designed to synthesize recent literature on the therapeutic effects of EVs on physiological and biological outcomes of asthma in pre-clinical studies. An electronic search of Web of Science, EMBASE, MEDLINE, and Scopus will be conducted on manuscripts published in the last five years that adhere to standardized guidelines for EV research. Grey literature will also be included. Two reviewers will independently screen the selected studies for title and abstract, and full text based on the eligibility criteria. Data will be extracted, narratively synthesized and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. This systematic review will summarize the current knowledge from preclinical studies investigating the therapeutic effects of EVs on asthma. The results will delineate whether EVs can mitigate biological hallmarks of asthma, and if so, describe the underlying mechanisms involved in the process. This insight is crucial for identifying key pathways that can be targeted to alleviate the burden of asthma. The data will also reveal the origin, dosage and biophysical characteristics of beneficial EVs. Overall, our results will provide a scaffold for future intervention and translational studies on asthma treatment.


Author(s):  
Kosuke Sasaki ◽  
Shigetsugu Takano ◽  
Satoshi Tomizawa ◽  
Yoji Miyahara ◽  
Katsunori Furukawa ◽  
...  

Abstract Background Recent studies indicate that complement plays pivotal roles in promoting or suppressing cancer progression. We have previously identified C4b-binding protein α-chain (C4BPA) as a serum biomarker for the early detection of pancreatic ductal adenocarcinoma (PDAC). However, its mechanism of action remains unclear. Here, we elucidated the functional roles of C4BPA in PDAC cells and the tumor microenvironment. Methods We assessed stromal C4BPA, the C4BPA binding partner CD40, and the number of CD8+ tumor-infiltrating lymphocytes in resected human PDAC tissues via immunohistochemical staining. The biological functions of C4BPA were investigated in peripheral blood mononuclear cells (PBMCs) and human PDAC cell lines. Mouse C4BPA (mC4BPA) peptide, which is composed of 30 amino acids from the C-terminus and binds to CD40, was designed for further in vitro and in vivo experiments. In a preclinical experiment, we assessed the efficacy of gemcitabine plus nab-paclitaxel (GnP), dual immune checkpoint blockades (ICBs), and mC4BPA peptide in a mouse orthotopic transplantation model. Results Immunohistochemical analysis revealed that high stromal C4BPA and CD40 was associated with favorable PDAC prognosis (P=0.0005). Stromal C4BPA strongly correlated with the number of CD8+ tumor-infiltrating lymphocytes (P=0.001). In in vitro experiments, flow cytometry revealed that recombinant human C4BPA (rhC4BPA) stimulation increased CD4+ and CD8+ T cell numbers in PBMCs. rhC4BPA also promoted the proliferation of CD40-expressing PDAC cells. By contrast, combined treatment with gemcitabine and rhC4BPA increased PDAC cell apoptosis rate. mC4BPA peptide increased the number of murine T lymphocytes in vitro and the number of CD8+ tumor-infiltrating lymphocytes surrounding PDAC tumors in vivo. In a preclinical study, GnP/ICBs/mC4BPA peptide treatment, but not GnP treatment, led to the accumulation of a greater number of CD8+ T cells in the periphery of PDAC tumors and to greater tumor regression than did control treatment. Conclusions These findings demonstrate that the combination of GnP therapy with C4BPA inhibits PDAC progression by promoting antitumor T cell accumulation in the tumor microenvironment.


Sign in / Sign up

Export Citation Format

Share Document