Cationic dye adsorption and separation at discrete molecular level: first example of an iron cluster with rapid and selective adsorption of methylene blue from aqueous system

2021 ◽  
Author(s):  
Muhammad Nadeem Akhtar ◽  
Mantasha I. ◽  
M. Shahid ◽  
Murad A. AlDamen ◽  
Muhammad Khalid ◽  
...  

A novel Fe6 cluster was designed as a rare example of any discrete molecule as a highly efficient, selective and rapid functional material for the adsorption of cationic dyes, i.e. methylene blue (MB), from contaminated water bodies.

Soft Matter ◽  
2020 ◽  
Vol 16 (8) ◽  
pp. 2075-2085 ◽  
Author(s):  
Subhangi Devadarshini Sahoo ◽  
Edamana Prasad

Investigation of selective cationic dye adsorption by a mechanically stable and self-healable GOxAAM polymer hydrogel.


2019 ◽  
Vol 62 (3) ◽  
Author(s):  
Naereh Besharati ◽  
Nina Alizadeh ◽  
Shahab Shariati

Abstract. This study was focused on the adsorption of methylene blue (MB) as a cationic dye on magnetite nanoparticles loaded with coffee (MNLC) and magnetite nanoparticles loaded with peanut husk (MNLPH) as naturally cheap sources of adsorbent. Coffee and Peanut husk were magnetically modified by contact with water-based magnetic fluid. These new type of magnetically natural materials can be easily separated by means of magnetic separators. They were characterized with Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) instruments. Different parameters affecting MB removal efficiency such as contact time, pH of solution and amount of adsorbents were studied and optimized. Dye adsorption process was studied from both kinetic and equilibrium point. The studies of MB sorption kinetic showed rapid dynamic sorption with second-order kinetic model, suggesting chemisorption mechanism with R2 = 0.9988, qeq=10.28 mg g-1 and R2=0.9967, qeq=128.20 mg g-1, respectively. Equilibrium data were fitted well to the Langmuir isotherm more than Freundlich and Temkin isotherm. The modified adsorbents showed MB removal with 88.49 and 74.62 mg g-1 sorption capacity for MNLC and MNLPH, respectively. This study showed a simple, efficient and reliable method for removal of MB from aqueous solutions with MNLC and MNLPH as efficient adsorbents. Resumen. Este estudio se centró en la adsorción de azul de metileno (MB) como un colorante catiónico en nanopartículas de magnetita cargadas con café (MNLC) y nanopartículas de magnetita cargadas con cáscara de cacahuete (MNLPH) como fuentes de adsorbente naturalmente económicas. El café y la cáscara de maní se modificaron magnéticamente por contacto con un fluido magnético a base de agua. Este nuevo tipo de materiales magnéticamente naturales se puede separar fácilmente mediante separadores magnéticos. Se caracterizaron con espectroscopia infrarroja de transformada de Fourier (FT-IR), difracción de rayos X en polvo (DRX) y microscopía electrónica de barrido (SEM). Se estudiaron y optimizaron diferentes parámetros que afectan la eficiencia de eliminación de MB, como el tiempo de contacto, el pH de la solución y la cantidad de adsorbentes. Se estudió el proceso de adsorción de tinte desde el punto de equilibrio y cinético. Los estudios de cinética de absorción de MB mostraron una absorción dinámica rápida con un modelo cinético de segundo orden, lo que sugiere un mecanismo de quimiosorción con R2= 0.9988, qeq= 10.28 mg g-1 y R2= 0.9967, qeq= 128.20 mg g-1, respectivamente. Los datos de equilibrio se ajustaron bien a la isoterma de Langmuir más que a la isoterma de Freundlich y Temkin. Los adsorbentes modificados mostraron eliminación de MB con 88.49 y 74.62 mg g-1 de capacidad de absorción para MNLC y MNLPH, respectivamente. Este estudio mostró un método simple, eficiente y confiable para la eliminación de MB de soluciones acuosas con MNLC y MNLPH como adsorbentes eficientes.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1356 ◽  
Author(s):  
Xuefei Zhou ◽  
Mingzhen Xu ◽  
Lingling Wang ◽  
Xiaobo Liu

Dye pollution is a serious problem in modern society. We desired to develop an efficient adsorbent for the decontamination of discharged dyes. In this work, the polymeric microspheres derived from a kind of amphiphilic block of co-poly(arylene ether nitrile) (B-b-S-P) were prepared on the basis of “oil-in-water” (O/W) microemulsion method. The B-b-S-P microspheres were found competent to remove the cationic dye, methylene blue (MB); and various influential factors, such as contact time, initial concentration, solution pH and temperature were investigated. Results indicated that the maximum adsorption capacity of B-b-S-P microspheres for MB was 119.84 mg/g at 25 °C in neutral conditions. Adsorption kinetics and isotherm dates were well fitted to a pseudo-second-order kinetic model and the Langmuir isotherm model, and thermodynamic parameters implied that the adsorption process was endothermic. The B-b-S-P microspheres also exhibited a highly selective adsorption for cationic dye MB, even in the presence of anionic dye methyl orange (MO). In addition, the possible adsorption mechanism was studied, suggesting that the electrostatic interaction and π–π interaction could be the main force in the adsorption process.


Author(s):  
J.A. Panitz

The first few atomic layers of a solid can form a barrier between its interior and an often hostile environment. Although adsorption at the vacuum-solid interface has been studied in great detail, little is known about adsorption at the liquid-solid interface. Adsorption at a liquid-solid interface is of intrinsic interest, and is of technological importance because it provides a way to coat a surface with monolayer or multilayer structures. A pinhole free monolayer (with a reasonable dielectric constant) could lead to the development of nanoscale capacitors with unique characteristics and lithographic resists that surpass the resolution of their conventional counterparts. Chemically selective adsorption is of particular interest because it can be used to passivate a surface from external modification or change the wear and the lubrication properties of a surface to reflect new and useful properties. Immunochemical adsorption could be used to fabricate novel molecular electronic devices or to construct small, “smart”, unobtrusive sensors with the potential to detect a wide variety of preselected species at the molecular level. These might include a particular carcinogen in the environment, a specific type of explosive, a chemical agent, a virus, or even a tumor in the human body.


1959 ◽  
Vol 9 (9) ◽  
pp. 482-486
Author(s):  
M. C. Bennett ◽  
D. A. Haydon

Author(s):  
Seroor Atalah Khaleefa Alia ◽  
Dr. Mohammed Ibrahimb ◽  
Hussein Ali Hussein

Adsorption is most commonly applied process for the removal of pollutants such as dyes and heavy metals ions from wastewater. The present work talks about preparing graphenic material attached sand grains called graphene sand composite (GSC) by using ordinary sugar as a carbon source. Physical morphology and chemical composition of GSC was examined by using (FTIR, SEM, EDAX and XRD). Efficiency of GSC in the adsorption of organic dyes from water was investigated using reactive green dye with different parameters such as (ph, temperature, contact time and dose). Adsorption isotherm was also studied and the results showed that the maximum adsorption capacity of dye is 28.98 mg/g. This fast, low-cost process can be used to manufacture commercial filters to treat contaminated water using appropriate engineering designs.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 208
Author(s):  
Ramona B. J. Ihlenburg ◽  
Anne-Catherine Lehnen ◽  
Joachim Koetz ◽  
Andreas Taubert

New cryogels for selective dye removal from aqueous solution were prepared by free radical polymerization from the highly water-soluble crosslinker N,N,N’,N’-tetramethyl-N,N’-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The resulting white and opaque cryogels have micrometer sized pores with a smaller substructure. They adsorb methyl orange (MO) but not methylene blue (MB) from aqueous solution. Mixtures of MO and MB can be separated through selective adsorption of the MO to the cryogels while the MB remains in solution. The resulting cryogels are thus candidates for the removal of hazardous organic substances, as exemplified by MO and MB, from water. Clearly, it is possible that the cryogels are also potentially interesting for removal of other compounds such as pharmaceuticals or pesticides, but this must be investigated further.


Sign in / Sign up

Export Citation Format

Share Document