Gold nanospheres and nanorods for anti-cancer therapy: comparative studies of fabrication, surface-decoration, and anti-cancer treatments

Nanoscale ◽  
2020 ◽  
Vol 12 (28) ◽  
pp. 14996-15020
Author(s):  
Wei Mao ◽  
Young Ju Son ◽  
Hyuk Sang Yoo

Various gold nanoparticles have been explored as cancer therapeutics because they can be widely engineered for use as efficient drug carriers and diagnostic agents, and in photo-irradiation therapy.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 261
Author(s):  
Wei Mao ◽  
Sol Lee ◽  
Ji Un Shin ◽  
Hyuk Sang Yoo

Surface initiated atom transfer radical polymerization (SI-ATRP) documented a simple but efficient technique to grow a dense polymer layer on any surface. Gold nanoparticles (AuNPs) give a broad surface to immobilize sulfhyryl group-containing initiators for SI-ATRP; in addition, AuNPs are the major nanoparticulate carriers for delivery of anti-cancer therapeutics, since they are biocompatible and bioinert. In this work, AuNPs with a disulfide initiator were polymerized with sulfoethyl methacrylate by SI-ATRP to decorate the particles with anionic corona, and branched polyethyeleneimine (PEI) and siRNA were sequentially layered onto the anionic corona of AuNP by electrostatic interaction. The in vitro anti-cancer effect confirmed that AuNP with anionic corona showed higher degrees of apoptosis as well as suppression of the oncogene expression in a siRNA dose-dependent manner. The in vivo study of tumor-bearing nude mice revealed that mice treated with c-Myc siRNA-incorporated AuNPs showed dramatically decreased tumor size in comparison to those with free siRNA for 4 weeks. Furthermore, histological examination and gene expression study revealed that the decorated AuNP significantly suppressed c-Myc expression. Thus, we envision that the layer-by-layer assembly on the anionic brushes can be potentially used to incorporate nucleic acids onto metallic particles with high transfection efficiency.


2020 ◽  
Vol 48 (3) ◽  
pp. 538-551 ◽  
Author(s):  
Christine Leopold ◽  
Rebecca L. Haffajee ◽  
Christine Y. Lu ◽  
Anita K. Wagner

Over the past decades, anti-cancer treatments have evolved rapidly from cytotoxic chemotherapies to targeted therapies including oral targeted medications and injectable immunooncology and cell therapies. New anti-cancer medications come to markets at increasingly high prices, and health insurance coverage is crucial for patient access to these therapies. State laws are intended to facilitate insurance coverage of anti-cancer therapies.Using Massachusetts as a case study, we identified five current cancer coverage state laws and interviewed experts on their perceptions of the relevance of the laws and how well they meet the current needs of cancer care given rapid changes in therapies. Interviewees emphasized that cancer therapies, as compared to many other therapeutic areas, are unique because insurance legislation targets their coverage. They identified the oral chemotherapy parity law as contributing to increasing treatment costs in commercial insurance. For commercial insurers, coverage mandates combined with the realities of new cancer medications — including high prices and often limited evidence of efficacy at approval — compound a difficult situation. Respondents recommended policy approaches to address this challenging coverage environment, including the implementation of closed formularies, the use of cost-effectiveness studies to guide coverage decisions, and the application of value-based pricing concepts. Given the evolution of cancer therapeutics, it may be time to evaluate the benefits and challenges of cancer coverage mandates.


Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 830
Author(s):  
Erum Shoeb ◽  
Uzma Badar ◽  
Srividhya Venkataraman ◽  
Kathleen Hefferon

Naturally occurring viral nanomaterials have gained popularity owing to their biocompatible and biodegradable nature. Plant virus nanoparticles (VNPs) can be used as nanocarriers for a number of biomedical applications. Plant VNPs are inexpensive to produce, safe to administer and efficacious as treatments. The following review describes how plant virus architecture facilitates the use of VNPs for imaging and a variety of therapeutic applications, with particular emphasis on cancer. Examples of plant viruses which have been engineered to carry drugs and diagnostic agents for specific types of cancer are provided. The drug delivery system in response to the internal conditions is known as stimuli response, recently becoming more applicable using plant viruses based VNPs. The review concludes with a perspective of the future of plant VNPs and plant virus-like particles (VLPs) in cancer research and therapy.


Nanoscale ◽  
2014 ◽  
Vol 6 (20) ◽  
pp. 12026-12033 ◽  
Author(s):  
C. Yang ◽  
J. Uertz ◽  
D. Yohan ◽  
B. D. Chithrani

A novel hyperspectral imaging technique is used to image GNPs: a combination of three peptides is used for efficient nuclear targeting and improved retention of GNPs targeted into the nucleus is shown for the first time. This is important for future cancer therapeutics as GNPs can be used as radiation dose enhancers and anticancer drug carriers.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 159
Author(s):  
Achmad Kemal Harzif ◽  
Budi Wiweko ◽  
Putri Addina ◽  
Kartika Iswaranti ◽  
Melisa Silvia ◽  
...  

Background: Efforts in reproductive preservation for cancer patients have become one of the important aspects of cancer management. In fact, decline in reproductive function is known to occur after exposure to anti-cancer treatments. Measuring anti-Müllerian hormone (AMH) levels is known to be the best parameter in predicting ovarian reserves, which indicates reproductive function. In total, 68% of cancer survivors of reproductive age who underwent anti-cancer treatments suffer from infertility. Meanwhile, ovarian reserves also decrease with increasing age. There is ongoing debate on whether the ovarian reserves of cancer patients could be reduced long before exposure to anti-cancer therapy. Therefore, it is important to know whether ovarian reserves in cancer patients decrease before or after anti-cancer therapy. This can help predict the reproductive function in such cases and the effectiveness of ovarian preservation efforts. Methods: A cross-sectional study was conducted, comparing the AMH levels of 44 female cancer patients of reproductive age before cancer therapy, to 44 non-cancer patients of reproductive age (age matched). The biological ages from both groups were adjusted using the Indonesian Kalkulator of Oocytes. Results: The median age in both groups was 28 years old. The AMH levels in the cancer group were found to be significantly lower in contrast to those in the non-cancer group (1.11 [0.08-4.65] ng/ml vs. 3.99 [1.19- 8.7]; p- value <0.001). Therefore, the biological age in the cancer group was 10 years older than that of the non-cancer group, indicating that ovarian aging occurs earlier in cancer patients. Conclusions: AMH levels of cancer patients of reproductive age were already reduced before cancer therapy, given an older biological age, in contrast to that of the non-cancer patients. Proper counseling and implementation of fertility-preserving methods is highly recommended in this group of patients.


F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 159
Author(s):  
Achmad Kemal Harzif ◽  
Budi Wiweko ◽  
Putri Addina ◽  
Kartika Iswaranti ◽  
Melisa Silvia ◽  
...  

Background: Efforts in reproductive preservation for cancer patients have become one of the important aspects of cancer management. In fact, decline in reproductive function is known to occur after exposure to anti-cancer treatments. Measuring anti-Müllerian hormone (AMH) levels is known to be the best parameter in predicting ovarian reserves, which indicates reproductive function. In total, 68% of cancer survivors of reproductive age who underwent anti-cancer treatments suffer from infertility. Meanwhile, ovarian reserves also decrease with increasing age. There is ongoing debate on whether the ovarian reserves of cancer patients could be reduced long before exposure to anti-cancer therapy. Therefore, it is important to know whether ovarian reserves in cancer patients decrease before or after anti-cancer therapy. This can help predict the reproductive function in such cases and the effectiveness of ovarian preservation efforts. Methods: A cross-sectional study was conducted, comparing the AMH levels of 44 female cancer patients of reproductive age before cancer therapy, to 44 non-cancer patients of reproductive age (age matched). The AMH was determined from blood.The biological ages from both groups were adjusted using the Indonesian Kalkulator of Oocytes. Results: The median age in both groups was 28 years old. The AMH levels in the blood of the cancer group were found to be significantly lower in contrast to those in the non-cancer group (1.11 [0.08-4.65] ng/ml vs. 3.99 [1.19- 8.7]; p- value <0.001). Therefore, the biological age in the cancer group was 10 years older than that of the non-cancer group, indicating that ovarian aging occurs earlier in cancer patients. Conclusions: AMH levels of cancer patients of reproductive age were already reduced before cancer therapy, given an older biological age, in contrast to that of the non-cancer patients. Proper counseling and implementation of fertility-preserving methods is highly recommended in this group of patients.


2021 ◽  
Author(s):  
Celina Yang

Gold nanoparticles (GNPs) have been extensively used in cancer research due to their abilities as anti-cancer drug carriers for chemotherapy and as dose enhancers in radiotherapy. Although most GNP research in the past involved cytoplasm localized GNPs, it is predicted that therapy response can be enhanced if GNPs can be effectively targeted into the nucleus. A strategy for designing a GNP-peptide complex for targeting the nucleus will be presented. Three different sequences of peptides (CKKKKKKGGAGDMFG, CGGRKKRRGRRRAP, CALNN) were conjugated onto GNPs. The first peptide was used to stabilize the complex, the second peptide to enhance uptake into the cell, while the third peptide was used to induce nuclear delivery. With nuclear targeting, more damage can be caused to the DNP of cancer cells upon irradiation. This research will establish a more successful NP-based platform that combines treatment modalities and more effectively approach cancer treatment.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 868 ◽  
Author(s):  
Luigi Mandrich ◽  
Emilia Caputo

Cancer is the main cause of mortality and morbidity worldwide. Although a large variety of therapeutic approaches have been developed and translated into clinical protocols, the toxic side effects of cancer treatments negatively impact patients, allowing cancer to grow. Brassica metabolites are emerging as new weapons for anti-cancer therapeutics. The beneficial role of the consumption of brassica vegetables, the most-used vegetables in the Mediterranean diet, particularly broccoli, in the prevention of chronic diseases, including cardiovascular diseases, diabetes, and obesity, has been well-documented. In this review, we discuss the anti-tumor effects of the bioactive compounds from Brassica vegetables with regard to the compounds and types of cancer against which they show activity, providing current knowledge on the anti-cancer effects of Brassica metabolites against major types of tumors. In addition, we discuss the impacts of industrial and domestic processing on the compounds’ functional properties before their consumption as well as the main strategies used to increase the content of health-promoting metabolites in Brassica plants through biofortification. Finally, the impacts of microbiota on the compounds’ bioactivity are considered. This information will be helpful for the further development of efficacious anti-cancer drugs.


2019 ◽  
Vol 7 (8) ◽  
pp. 3190-3203 ◽  
Author(s):  
Zhengzhong Wu ◽  
Ziying Gan ◽  
Bin Chen ◽  
Fan Chen ◽  
Jun Cao ◽  
...  

Stimuli responsive functional polymer isomers performed variously serving as drug carriers for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document