scholarly journals Concentrated small extracellular vesicles from menstrual blood-derived stromal cells improve intrauterine adhesion, a pre-clinical study in a rat model

Nanoscale ◽  
2021 ◽  
Author(s):  
Siwen Zhang ◽  
Qiyuan Chang ◽  
Pingping Li ◽  
Xiaoyu Tong ◽  
Yi Feng ◽  
...  

MenSCs-sEVs safely and effectively enhanced endometrial restoration, suggesting a promising non-cellular therapy for endometrial regeneration and a key role in MenSC-mediated IUA treatment.

Author(s):  
Maria Jose Ramirez-Bajo ◽  
Jordi Rovira ◽  
Marta Lazo-Rodriguez ◽  
Elisenda Banon-Maneus ◽  
Valeria Tubita ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Siwen Zhang ◽  
Boxian Huang ◽  
Peng Su ◽  
Qiyuan Chang ◽  
Pingping Li ◽  
...  

Abstract Background Premature ovarian insufficiency (POI) is one of the major causes of infertility. We previously demonstrated that transplantation of menstrual blood-derived stromal cells (MenSCs) effectively improved ovarian function in a murine model of POI. Recent studies indicated that mesenchymal stem cell-derived exosomes were important components in tissue repair. In this study, we investigated the therapeutic effects of MenSCs-derived exosomes (MenSCs-Exos) in a rat model of POI and its mechanism in restoring ovulation. Methods Ovaries of 4.5-day-old Sprague Dawley rats (SD rats) were cultured in vitro to evaluate the effects of MenSCs-Exos exposure on early follicle development. Furthermore, POI in rats was induced by intraperitoneal administration of 4-vinylcyclohexene diepoxide (VCD). Forty-eight POI rats were randomly assigned to four groups, each receiving a different treatment: PBS, MenSCs, MenSCs-Exos, and Exo-free culture supernatant of MenSCs. Estrous cyclicity, ovarian morphology, follicle dynamics, serum hormones, pregnancy outcomes, and molecular changes were investigated. Results Exposure to MenSCs-Exos promoted the proliferation of granulosa cells in primordial and primary follicles in vitro and increased the expression of early follicle markers Deleted In Azoospermia Like (DAZL) and Forkhead Box L2 (FOXL2) while inhibiting follicle apoptosis. In vivo, MenSCs-Exos transplantation effectively promoted follicle development in the rat model of POI and restored the estrous cyclicity and serum sex hormone levels, followed by improving the live birth outcome. In addition, transplantation of MenSCs-Exos regulated the composition of the ovarian extracellular matrix and accelerated the recruitment of dormant follicles in the ovarian cortex and increased proliferation of granulosa cells in these follicles. Conclusion MenSCs-Exos markedly promoted follicle development in vitro and in vivo and restored fertility in POI rats, suggesting a restorative effect on ovarian functions. The therapeutic effect of MenSCs-Exos transplantation was sustainable, consistent with that of MenSCs transplantation. Our results suggested that MenSCs-Exos transplantation may be a promising cell-free bioresource in the treatment of POI.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2199
Author(s):  
Dhir Gala ◽  
Sidhesh Mohak ◽  
Zsolt Fábián

Cellular therapy is a promising tool of human medicine to successfully treat complex and challenging pathologies such as cardiovascular diseases or chronic inflammatory conditions. Bone marrow-derived mesenchymal stromal cells (BMSCs) are in the limelight of these efforts, initially, trying to exploit their natural properties by direct transplantation. Extensive research on the therapeutic use of BMSCs shed light on a number of key aspects of BMSC physiology including the importance of oxygen in the control of BMSC phenotype. These efforts also led to a growing number of evidence indicating that the beneficial therapeutic effects of BMSCs can be mediated by BMSC-secreted agents. Further investigations revealed that BMSC-excreted extracellular vesicles could mediate the potentially therapeutic effects of BMSCs. Here, we review our current understanding of the relationship between low oxygen conditions and the effects of BMSC-secreted extracellular vesicles focusing on the possible medical relevance of this interplay.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hongping Niu ◽  
Xiaoling Miao ◽  
Xingxiu Zhan ◽  
Xiaona Zhou ◽  
Xingyan Li ◽  
...  

Intrauterine adhesion (IUA) is a serious complication caused by excessive fibrosis resulting from endometrial repair after trauma. The traditional Chinese medicine Tiaoshen Tongluo recipe (TTR) contains ingredients associated with the alleviation of fibrosis. The transforming growth factor-β1 (TGF-β1)/Smad pathway is thought to mediate fibrosis in IUA. In this study, we evaluated the influence of TTR on endometrial fibrosis in a rat model of IUA and in TGF-β1-stimulated endometrial stromal cells (ESCs). TTR was found to alleviate the level of endometrial fibrosis in a rat model of IUA. A higher number of collagen fibers and greater damage were observed in the endometrial tissue of untreated rats compared to those treated with TTR. The expression of TGF-β1, Smad2, Smad3, and Smad4 was upregulated following IUA, whereas Smad7 expression was downregulated. TTR lowers the expression of TGF-β1, Smad2, Smad3, and Smad4 but increases the expression of Smad7 in vivo, indicating that TTR can modulate the expression of the TGF-β1/Smad pathway to mediate fibrosis. In ESCs, the phosphorylation of Smad2 and Smad3 and upregulation of Smad4 were induced by TGF-β1 whereas the expression of Smad7 was inhibited. Administration of TTR reduces the phosphorylation of Smad2 and Smad3, increases Smad4 expression induced by TGF-β1, and promotes the expression of Smad7. TTR modulates the TGF-β1/Smad pathway to alleviate the generation of fibrotic tissue in response to IUA.


2019 ◽  
Vol 14 (5) ◽  
pp. 442-452 ◽  
Author(s):  
Wenjie Zheng ◽  
Yumin Yang ◽  
Russel Clive Sequeira ◽  
Colin E. Bishop ◽  
Anthony Atala ◽  
...  

Therapeutic effects of Mesenchymal Stem/Stromal Cells (MSCs) transplantation have been observed in various disease models. However, it is thought that MSCs-mediated effects largely depend on the paracrine manner of secreting cytokines, growth factors, and Extracellular Vesicles (EVs). Similarly, MSCs-derived EVs also showed therapeutic benefits in various liver diseases through alleviating fibrosis, improving regeneration of hepatocytes, and regulating immune activity. This review provides an overview of the MSCs, their EVs, and their therapeutic potential in treating various liver diseases including liver fibrosis, acute and chronic liver injury, and Hepatocellular Carcinoma (HCC). More specifically, the mechanisms by which MSC-EVs induce therapeutic benefits in liver diseases will be covered. In addition, comparisons between MSCs and their EVs were also evaluated as regenerative medicine against liver diseases. While the mechanisms of action and clinical efficacy must continue to be evaluated and verified, MSCs-derived EVs currently show tremendous potential and promise as a regenerative medicine treatment for liver disease in the future.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1908
Author(s):  
Anna Labedz-Maslowska ◽  
Agnieszka Szkaradek ◽  
Tomasz Mierzwinski ◽  
Zbigniew Madeja ◽  
Ewa Zuba-Surma

Adipose tissue (AT) represents a commonly used source of mesenchymal stem/stromal cells (MSCs) whose proregenerative potential has been widely investigated in multiple clinical trials worldwide. However, the standardization of the manufacturing process of MSC-based cell therapy medicinal products in compliance with the requirements of the local authorities is obligatory and will allow us to obtain the necessary permits for product administration according to its intended use. Within the research phase (RD), we optimized the protocols used for the processing and ex vivo expansion of AT-derived MSCs (AT-MSCs) for the development of an Advanced Therapy Medicinal Product (ATMP) for use in humans. Critical process parameters (including, e.g., the concentration of enzyme used for AT digestion, cell culture conditions) were identified and examined to ensure the high quality of the final product containing AT-MSCs. We confirmed the identity of isolated AT-MSCs as MSCs and their trilineage differentiation potential according to the International Society for Cellular Therapy (ISCT) recommendations. Based on the conducted experiments, in-process quality control (QC) parameters and acceptance criteria were defined for the manufacturing of hospital exemption ATMP (HE-ATMP). Finally, we conducted a validation of the manufacturing process in a GMP facility. In the current study, we presented a process approach leading to the optimization of processing and the ex vivo expansion of AT-MSCs for the development of ATMP for use in humans.


2021 ◽  
Vol 22 (13) ◽  
pp. 6837
Author(s):  
Pauline Rozier ◽  
Marie Maumus ◽  
Claire Bony ◽  
Alexandre Thibault Jacques Maria ◽  
Florence Sabatier ◽  
...  

Systemic sclerosis (SSc) is a complex disorder resulting from dysregulated interactions between the three main pathophysiological axes: fibrosis, immune dysfunction, and vasculopathy, with no specific treatment available to date. Adipose tissue-derived mesenchymal stromal cells (ASCs) and their extracellular vesicles (EVs) have proved efficacy in pre-clinical murine models of SSc. However, their precise action mechanism is still not fully understood. Because of the lack of availability of fibroblasts isolated from SSc patients (SSc-Fb), our aim was to determine whether a TGFβ1-induced model of human myofibroblasts (Tβ-Fb) could reproduce the characteristics of SSc-Fb and be used to evaluate the anti-fibrotic function of ASCs and their EVs. We found out that Tβ-Fb displayed the main morphological and molecular features of SSc-Fb, including the enlarged hypertrophic morphology and expression of several markers associated with the myofibroblastic phenotype. Using this model, we showed that ASCs were able to regulate the expression of most myofibroblastic markers on Tβ-Fb and SSc-Fb, but only when pre-stimulated with TGFβ1. Of interest, ASC-derived EVs were more effective than parental cells for improving the myofibroblastic phenotype. In conclusion, we provided evidence that Tβ-Fb are a relevant model to mimic the main characteristics of SSc fibroblasts and investigate the mechanism of action of ASCs. We further reported that ASC-EVs are more effective than parental cells suggesting that the TGFβ1-induced pro-fibrotic environment may alter the function of ASCs.


2021 ◽  
Vol 10 (13) ◽  
pp. 2925
Author(s):  
Manuel Sanchez-Diaz ◽  
Maria I. Quiñones-Vico ◽  
Raquel Sanabria de la Torre ◽  
Trinidad Montero-Vílchez ◽  
Alvaro Sierra-Sánchez ◽  
...  

Mesenchymal Stromal Cells (MSCs) are of great interest in cellular therapy. Different routes of administration of MSCs have been described both in pre-clinical and clinical reports. Knowledge about the fate of the administered cells is critical for developing MSC-based therapies. The aim of this review is to describe how MSCs are distributed after injection, using different administration routes in animal models and humans. A literature search was performed in order to consider how MSCs distribute after intravenous, intraarterial, intramuscular, intraarticular and intralesional injection into both animal models and humans. Studies addressing the biodistribution of MSCs in “in vivo” animal models and humans were included. After the search, 109 articles were included in the review. Intravenous administration of MSCs is widely used; it leads to an initial accumulation of cells in the lungs with later redistribution to the liver, spleen and kidneys. Intraarterial infusion bypasses the lungs, so MSCs distribute widely throughout the rest of the body. Intramuscular, intraarticular and intradermal administration lack systemic biodistribution. Injection into various specific organs is also described. Biodistribution of MSCs in animal models and humans appears to be similar and depends on the route of administration. More studies with standardized protocols of MSC administration could be useful in order to make results homogeneous and more comparable.


Sign in / Sign up

Export Citation Format

Share Document