scholarly journals Characterizing viscoelastic properties of synthetic and natural fibers and their coatings with a torsional pendulum

Soft Matter ◽  
2021 ◽  
Author(s):  
Bavand Keshavarz ◽  
Brady Zarket ◽  
Samiul Amin ◽  
Ronak Rughani ◽  
Sivaramakrishnan Muthukrishnan ◽  
...  

Characterizing and understanding the viscoelastic mechanical properties of natural and synthetic fibers is of great importance in many biological and industrial applications. Microscopic techniques such as micro/nano indentation have been...

Author(s):  
Piyush P. Gohil ◽  
Kundan Patel ◽  
Vijaykumar Chaudhary ◽  
Ronak Ramjiyani

The advancement of polymer composites containing natural fibers as a manageable option material for certain designing applications, especially aviation and car applications, is a well-known area of investigation. Nevertheless, the high mechanical properties connected with synthetic fibers they are awesome and lavish contrasted with natural fibers. The utilization of natural plant fibers and mixes of natural and synthetic fibers for making ease building materials has produced much interest recently. In the present work, bamboo–glass hybrid polyester composites were produced and their mechanical properties like elasticity and flexural quality were assessed for different weight fraction and distinctive stacking sequence. The outcomes observed that bamboo–glass mixture composites offered the benefits of both natural and synthetic fibers. It is also observed that hybridization started a material with general intermediate properties between pure glass and pure bamboo. However, the significance of controlling the stacking grouping to upgrade properties was evident.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2088 ◽  
Author(s):  
Ayyappa Atmakuri ◽  
Arvydas Palevicius ◽  
Andrius Vilkauskas ◽  
Giedrius Janusas

The present review article provides an overview of the properties of various natural and synthetic fibers for the fabrication of pure natural composites and the combination of both natural/synthetic fibers-based hybrid composites, bio-based resins, various fabrication techniques, chemical and mechanical properties of fibers, the effect of chemical treatment and the influence of nanoparticles on the composite materials. Natural fibers are becoming more popular and attractive to researchers, with satisfactory results, due to their availability, ease of fabrication, cost-effectiveness, biodegradable nature and being environmentally friendly. Hybrid composites made up of two different natural fibers under the same matrix material are more popular than a combination of natural and synthetic fibers. Recent studies relevant to natural fiber hybrid composites have stated that, due to their biodegradability and the strength of individual fibers causing an impact on mechanical properties, flame retardancy and moisture absorption, natural fibers need an additional treatment like chemical treatment for the fibers to overcome those drawbacks and to enhance their better properties. The result of chemical treatment on composite material properties such as thermal, mechanical and moisture properties was studied. Researchers found that the positive influence on overall strength by placing the filler materials (nanoparticles) in the composite materials. Hybrid composites are one of the fields in polymer science that are attracting consideration for various lightweight applications in a wide range of industries such as automobile, construction, shipping, aviation, sports equipment, electronics, hardware and biomedical sectors.


2021 ◽  
Vol 55 (1-2) ◽  
pp. 1-12
Author(s):  
TSHWAFO ELIAS MOTAUNG

"This review presents recent research on cellulosic materials and its latest uses, as well as scientific possibilities for more applications. Cellulose continues to display its advantages over synthetic fibers and its potential to replace fossilbased materials, which are known to harm ecosystems. Common attractive applications of cellulose include packaging, healthcare materials, electronics and printing. Most applications seem to rotate around the equilibrium of hydrophilicity, its mechanical properties and optical properties. Details on industrial applications, knowledge gaps and green innovations in cellulose conductivity, as well as limitations of its thermal degradation, are thoroughly covered. Most innovations are motivated by industrial needs, because renewability and inexpensiveness are the latest additional values to most industries. All common and innovative pretreatments are well summarized in this review. Furthermore, the paper provides interesting details on cellulose polymer composites, their applications and some recommendations for further research."


2020 ◽  
pp. 152808372093419 ◽  
Author(s):  
Hilal Olcay ◽  
Emine Dilara Kocak

Recently, due to environmental concerns and dependence on depleted resources, the use of renewable resources has become important in the preparation of various industrial materials. The use of natural fibers instead of petroleum-based synthetic fibers traditionally used in the production of composite materials provides many advantages in terms of both environmental and cost. The utilization of agricultural wastes as natural fibers also contributes significantly to the reduction and reuse of wastes, which is one of the objectives of sustainable development. In this study, artichoke stem waste fibers reinforced polyurethane foam composites were obtained. The fibers were treated with alkaline surface treatment at different concentrations (5% and 10%) of sodium hydroxide (NaOH) and durations (5, 10 and 15 min). The optimal alkali method was determined and applied to the fibers and its effect on composites was also investigated. Treated and untreated fibers were combined with polyurethane (PU) matrix at different reinforcement ratios (5, 10, 15 and 20%) to produce bio-fiber based composites. Depending on these reinforcement rates and alkali treatment, the mechanical properties of composites such as strength, elongation and modulus were investigated. The composites, which have the best mechanical properties, were selected and these composites were evaluated in terms of thermal and sound insulation with considering their morphological properties. It has been determined that artichoke stem waste fibers can provide good mechanical, thermal and sound insulation properties in the composites, and thus it has been found that great advantages can be achieved in terms of cost and ecology.


2019 ◽  
Vol 895 ◽  
pp. 15-20
Author(s):  
Raghavendra Subramanya ◽  
S.S. Prabhakara

Natural fibers, in particularly lignocellulosic fibers are attracting material scientists now days, due to their comparative advantages over synthetic fibers. Biodegradable composites reinforced with short banana fibre after alkali treatment along with cassava starch matrix were prepared using the hot compression method. The mechanical properties like tensile strength and impact strength were investigated. Mechanical properties of the composites made from alkali treated fibres were superior to the untreated fibres. SEM observations on the fracture surface of composites showed that the surface modification of the fibre occurred and improved fibre–matrix adhesion. Keywords: Surface modification; banana fiber; Biodegradable composites; Mechanical properties; Matrix.


2015 ◽  
Vol 766-767 ◽  
pp. 122-132
Author(s):  
Tippusultan ◽  
V.N. Gaitonde

Polymers reinforced with synthetic fibers such as glass and carbon offer advantages of high stiffness and strength to weight ratio compared to conventional materials. Despite these advantages, the prevalent use of synthetic fiber-reinforced polymer composite has a tendency to demur because of high initial cost and most importantly their adverse environmental impact. On the contrary, the increased interest in using natural fibers as reinforcement in plastics to substitute conventional synthetic fibers in automobile applications has become one of the main concerns to study the potential of using natural fibers as reinforcement for polymers. In this regard, an investigative study has been carried out to make potential utilization of natural fibers such as Jute and Coir as reinforcements, which are cheap and abundantly available in India. The objective of the present research work is to study the effects of fiber loading and particle size; fiber loading and fiber length on the mechanical properties of Jute-PP and Coir-PP bio-composites respectively. The experiments were planned as per full factorial design (FFD) and response surface methodology (RSM) based second order mathematical models of mechanical properties have been developed. Analysis of variance (ANOVA) has been employed to check the adequacy of the developed models. From the parametric analysis, it is revealed that Jute-PP bio-composites exhibit better mechanical properties when compared to Coir-PP bio-composites.


Author(s):  
Md. Koushic Uddin ◽  
Muksit Ahmed Chowdhury ◽  
Sonia Hossain ◽  
Md Zahidul Islam ◽  
Mohammad Shamim Sardar ◽  
...  

Fiber reinforced composite materials are attractive because of their properties such as high toughness, water resistance and can be adapted to meet the specific needs of a variety of applications. Incorporation of natural fibers can reduce the dependency over synthetic fibers. In this work, Jute glass fiber reinforced composites are fabricated by simple hand lay-up technique using epoxy resin as a matrix and various mechanical properties like tensile strength, flexural strength, impact strength and also the water absorption properties of the composite specimens are evaluated and analysed thoroughly. It is observed that incorporation of optimum amount of jute fibre with glass fibre improved mechanical properties can be achieved. Finally cost of composites are analysed and compared.


2019 ◽  
Vol 8 (3) ◽  
pp. 2450-2453

Usage of Natural Fiber Composites (NFC) is increased rapidly due to the bio degradability nature of the fibers. These natural fibers are mixed with synthetic fibers to obtain better mechanical properties. In this study, pine apple and glass fiber reinforced epoxy composites are developed and their mechanical properties were evaluated. Composites were prepared by varying the fibers content and by using hand layup process with glass moulds of size 160 x 160 x 3 mm3 . The obtained laminates were sliced as per the ASTM criterion to test the properties. Higher glass fiber content in the composite specimen obtained higher mechanical properties. The composites can be utilized for the purpose of manufacturing components like doors panels, desks, roof tops etc.


2018 ◽  
Vol 210 ◽  
pp. 02038
Author(s):  
Martin Ovsik ◽  
Tomas Fiala ◽  
Miroslav Manas ◽  
Adam Dockal

This article deals with the use of Ultra-nano indentation Tester UNHT3 for the measurement of (ultra nano) mechanical properties. The effect of electron beam (EB) radiation on Polybutylene terephthalate (PBT) was investigated. To clarify whether crosslinking could take place without or only with the presence of a crosslinking agent, special attention was paid to the incorporation of this agent into tested polymer. In this study we have investigated the effect of crosslinking agent, and instantaneously electron beam radiation-induced crosslinking in the presence of Triallyl cyanurate on various mechanical properties of PBT. The results show that the influence of radiation has improved the observed properties in the surface layer. The increase in ultra-nano properties was around 26% over the basic material. Engineering plastics like Poly (butylene terephthalate) due to their desirable properties have various industrial applications.


Author(s):  
Sergio Pons Ribera ◽  
Rabah Hamzaoui ◽  
Johan Colin ◽  
Benitha Vasseur ◽  
Laetitia Bessette ◽  
...  

This work, which is part of the FIBRABETON project, aims to anti-fissuration screed formulations proposition based on natural fibers and comparing these formulations to a synthetic fiber-screed formulation. Different natural fiber (hemp, flax, miscanthus and bamboo) with contents rangingfrom 0.4% to 0.8% were tested. The spread (slump), the shrinkage and mechanical strength (flexural and compressive) studies were carried out. SEM images of natural fibers and natural fibers screed formulation were analyzed. Overall, it is found that all natural fibers screed formulations tested, have shown better behaviour than the synthetic fibers screed formulation in point of view workability, shrinkage and mechanical properties. The lowest shrinkage value is found in the case of the H5 (5 mm long hemp fibers) screed formulation. Generally speaking, the mechanical strength values (flexural and compressive) are more or less similar between natural soft fibers (hemp and flax) and rigid fibers (miscanthus and bamboo). Taking in account slump, shrinkage and mechanical behavior, the proposed good compromise in this work is the H5 screed formulation.


Sign in / Sign up

Export Citation Format

Share Document