Polymerization-Induced Proteinosome Formation

Author(s):  
Hanying Zhao ◽  
Fang Liu ◽  
Yaqian Cai ◽  
Huan Wang ◽  
Xinlin Yang

In these years, the fabrication of well-organized proteinosomes has been a popular topic due to the potential applications of the structures in materials science and nanotechnology. A challenge in the...

1999 ◽  
Vol 604 ◽  
Author(s):  
Rosa E. Meléndez ◽  
Andrew J. Carn ◽  
Kazuki Sada ◽  
Andrew D. Hamilton

AbstractThe use of organic molecules as gelators in certain organic solvents has been the target of recent research in materials science. The types of structures formed in the gel matrix have potential applications as porous solids that can be used as absorbents or in catalysis. We will present and discuss the organogelation properties of a family of bis-ureas. Studies presented will include a molecule structure activity relationship, thermodynamic properties, comparison to x-ray crystallographic data and potential functionalization of the gels formed by this class of compounds


2019 ◽  
Vol 15 ◽  
pp. 2369-2379
Author(s):  
Yoichi Kobayashi ◽  
Yukie Mamiya ◽  
Katsuya Mutoh ◽  
Hikaru Sotome ◽  
Masafumi Koga ◽  
...  

Visible-light sensitized photoswitches have been paid particular attention in the fields of life sciences and materials science because long-wavelength light reduces photodegradation, transmits deep inside of matters, and achieves the selective excitation in condensed systems. Among various photoswitch molecules, the phenoxyl-imidazolyl radical complex (PIC) is a recently developed thermally reversible photochromic molecule whose thermal back reaction can be tuned from tens of nanoseconds to tens of seconds by rational design of the molecular structure. While the wide range of tunability of the switching speed of PIC opened up various potential applications, no photosensitivity to visible light limits its applications. In this study, we synthesized a visible-light sensitized PIC derivative conjugated with a benzil unit. Femtosecond transient absorption spectroscopy revealed that the benzil unit acts as a singlet photosensitizer for PIC by the Dexter-type energy transfer. Visible-light sensitized photochromic reactions of PIC are important for expanding the versatility of potential applications to life sciences and materials science.


2016 ◽  
Vol 87 (2) ◽  
pp. 244-257 ◽  
Author(s):  
Ngan Yi Kitty Lam ◽  
Meng Zhang ◽  
Hui-fen Guo ◽  
Chu Po Ho ◽  
Li Li

Chitosan has been widely studied for use in many areas, such as for its applications in the biomedical, engineering and pharmaceutical fields, as well as in industry, because of its unique properties, including biodegradability, antimicrobial activity, polycationic nature and biocompatibility. Thanks to the rapid development of materials science, chitosan applications are now possible in textiles. However, there are still many limitations of chitosan fibers in terms of their high electrostaticity, poor mechanical properties and high cost, which are obstacles that inhibit potential applications of chitosan fiber in the industry. Generally, in order to achieve the best performance with chitosan and enhance its commercial value, chitosan fibers are usually blended with long cotton fibers in the textile industry. Therefore, based on preliminary experiments and feedback from the industry, this study was carried out to further investigate the relationship between fiber length, fiber interaction and yarn performance. The results of this study would therefore help to reduce the production cost of yarns with the blending parameters used and also expand the utilization and applications beyond medical applications to fashion-based functional wear. The sliver-blending method offers better tensile properties of yarn samples, while the fiber-blending method offers higher uniformity of fiber distribution. This study would help to reduce the production cost of yarns by blending and also to expand the utilization and application not limited to fashion-based functional wear.


1995 ◽  
Vol 396 ◽  
Author(s):  
M. Nastasi ◽  
A.A. Elmoursi ◽  
R.J. Faehl ◽  
A.H. Hamdi ◽  
I. Henins ◽  
...  

AbstractIon beam processing, including ion implantation and ion beam assisted deposition (IBAD), are established surface modification techniques which have been used successfully to synthesize materials for a wide variety of tribological applications. In spite of the flexibility and promise of the technique, ion beam processing has been considered too expensive for mass production applications. However, an emerging technology, Plasma Source Ion Implantation (PSII), has the potential of overcoming these limitations to become an economically viable tool for mass industrial applications. In PSII, targets are placed directly in a plasma and then pulsed-biased to produce a non-line-of-sight process for intricate target geometries without complicated fixturing. If the bias is a relatively high negative potential (20-100kV) ion implantation will result. At lower voltages (50-1200V), deposition occurs. Potential applications for PSII are in low-value-added products such as tools used in manufacturing, orthopedic devices, and the production of wear coatings for hard disk media. This paper will focus on the technology and materials science associated with PSII.


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
O. G. Edema1 ◽  
O. M. Osiele2 ◽  
S. I. Otobo1 ◽  
A. O. Akinbolusere1

In this paper the modified Landau theory of Fermi Liquids was used to compute the thermal expansion and thermal conductivity of quasi-particles in metals. The result revealed that as temperature increases the thermal expansion of quasi-particles in metals increases in all the metals investigated. It is also observed that as the electron density parameter increases the thermal expansion of quasi-particles increases. This shows that at low density region the thermal expansion of quasi-particles is large.  The result obtained for the thermal conductivity of quasi-particles in metals revealed that for all the metals computed the thermal conductivity of quasi-particles decreases as temperature increases. This seems to suggest that as temperature increases the separation between quasi-particles increases because they are not heavy particles hence, the rate of absorbing heat decreases. The computed thermal expansion and thermal conductivity of quasi-particles are in better agreement with experimental values. This suggests that the introduction of the electron density parameter is promising in predicting the contribution of quasi-particles to the bulk properties of metals. This study revealed the extent to which quasi-particles contribute to the bulk properties of metals, which assisted their potential applications in materials science and engineering development.


Author(s):  
Alessandro Bruni

Objective: To perform a systematic review (SR) of existing literature and a patent landscape report (PLR) regarding the potential applications of shape-memory polymers (SMPs) in dentistry. Search strategy: Clinical and Biomedical online databases (Pubmed, Medline via Embase, Scopus, LILACS, Web of Science, Cochrane Library), Materials Science and Engineering databases (IEEE Explore, Compendex, Proquest), Material Science and Chemical database (Reaxys) so as Patents databases (Questel-Orbit, Espacenet, Patentscope) were consulted as recently as January 2019 to identify all papers and patents potentially relevant to the review. The reference lists of all eligible studies were hand searched for additional published work. Results: After duplicate selection and extraction procedures, 6 relevant full-text articles from the initial 302 and 45 relevant patents from 497 were selected. A modified Consolidated Standards of Reporting Trials (CONSORT) checklist of 14 items for reporting pre-clinical in-vitro studies was used to rate the methodological quality of the selected papers. The overall quality was judged low. Conclusions: Despite the great potential and versatility of SMPs, it was not possible to draw evidence-based conclusions supporting their immediate employment in clinical dentistry. This was due to the weak design and a limited number of studies included within this review and reflects the fact that additional research is mandatory to determine whether or not the use of SMPs in dentistry could be effective. Nevertheless, the qualitative analysis of selected papers and patents indicate that SMPs are promising materials in dentistry because of their programmable physical properties. These findings suggest the importance of furtherly pursuing this line of research.


2019 ◽  
Author(s):  
Yoichi Kobayashi ◽  
Yukie Mamiya ◽  
Katsuya Mutoh ◽  
Hikaru Sotome ◽  
Masafumi Koga ◽  
...  

Visible light sensitized photoswitches have been paid particular attention in the fields of life science and materials science because long-wavelength light reduces photodegradation, transmits deep inside of matters, and achieves the selective excitation in condensed systems.Among various photoswitch molecules, phenoxyl-imidazolyl radical complex (PIC) is a recently developed thermally-reversible photochromic molecule whose thermal back reaction can be tuned from tens of nanoseconds to tens of seconds by rational designs of the molecular structure. While the wide range of tunability of the switching speed of PIC opened up various potential applications, no photosensitivity to visible light limits its applications. In this study, we synthesized a visible light sensitized PIC derivative conjugated with a benzil unit. Femtosecond transient absorption spectroscopy revealed that the benzil unit acts as a singlet photosensitizer for PIC by the Dexter-type energy transfer. Visible light sensitized photochromic reactions of PIC are important for expanding the versatility of potential applications to life science and material science.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2216 ◽  
Author(s):  
Alessandro Bruni ◽  
Francesca Giulia Serra ◽  
Andrea Deregibus ◽  
Tommaso Castroflorio

Objective: To perform a systematic review (SR) of existing literature and a patent landscape report (PLR) regarding the potential applications of shape-memory polymers (SMPs) in dentistry. Search strategy: Clinical and Biomedical online databases (Pubmed, Medline via Embase, Scopus, LILACS, Web of Science, Cochrane Library), Materials Science and Engineering databases (IEEE Explore, Compendex, Proquest), Material Science and Chemical database (Reaxys) so as Patents databases (Questel-Orbit, Espacenet, Patentscope) were consulted as recently as January 2019 to identify all papers and patents potentially relevant to the review. The reference lists of all eligible studies were hand searched for additional published work. Results: After duplicate selection and extraction procedures, 6 relevant full-text articles from the initial 302 and 45 relevant patents from 497 were selected. A modified Consolidated Standards of Reporting Trials (CONSORT) checklist of 14 items for reporting pre-clinical in-vitro studies was used to rate the methodological quality of the selected papers. The overall quality was judged low. Conclusions: Despite the great potential and versatility of SMPs, it was not possible to draw evidence-based conclusions supporting their immediate employment in clinical dentistry. This was due to the weak design and a limited number of studies included within this review and reflects the fact that additional research is mandatory to determine whether or not the use of SMPs in dentistry could be effective. Nevertheless, the qualitative analysis of selected papers and patents indicate that SMPs are promising materials in dentistry because of their programmable physical properties. These findings suggest the importance of furtherly pursuing this line of research.


1994 ◽  
Vol 346 ◽  
Author(s):  
Larry L. Hench

ABSTRACTMany biological systems have evolved means of controlling the architecture of inorganic-organic composites at a nanometer scale. The principles of biochemistry and materials science underlying the potential use of biochemical processing to develop new molecularly tailored materials are discussed, with emphasis on:methods of stereochemical control of the organic-inorganic interface,genetic and enzymic control of biosynthesis and biomineralization,molecular orbital modelling of bio organic-inorganic interfaces,barriers and limitations of biomimetic and hierarchical processing,examples of unique materials made with biochemical processing.needs and potential applications in human prostheses.


2020 ◽  
pp. 934-955
Author(s):  
Imtiaz Ahmed ◽  
Naveed Ahmad ◽  
Imran Mehmood ◽  
Israr Ul Haq ◽  
Muhammad Hassan ◽  
...  

Nanotechnology is the latest development in science, where design, construction and applications of various particles involve at least one dimension in nanometers. The nanotechnology has been utilized in many of the scientific and societal disciplines including electronics, medicine, materials science and many more. It has also influenced the broader fields like civil engineering as well as the sub-disciplines including transportation, structural, geotechnical, water resources and environmental engineering. The current focus of the researchers in transportation field is to develop the materials for sustainable transportation facilities, by using the concepts of nanotechnology. The chapter is concerned with the literature review of potential applications of the nanotechnology in transportation engineering including safety, durability, sustainability and economy. The practical applications of the nanotechnology and nanomaterials shall prove to be an asset in transportation engineering.


Sign in / Sign up

Export Citation Format

Share Document