Cross-Kingdom Regulation by Dietary Plant miRNAs: An Evidence-Based Review with Recent Updates

2021 ◽  
Author(s):  
Mingxi Jia ◽  
JinTao He ◽  
weidong Bai ◽  
Qinlu Lin ◽  
Jing Deng ◽  
...  

As non-coding RNA molecules, microRNAs (miRNAs) are widely known for their critical role in gene regulation. Recent studies have shown that plant miRNAs obtained through dietary oral administration can survive...

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anupam Bhattacharya ◽  
Simang Champramary ◽  
Tanya Tripathi ◽  
Debajit Thakur ◽  
Ilya Ioshikhes ◽  
...  

Abstract Background Our understanding of genome regulation is ever-evolving with the continuous discovery of new modes of gene regulation, and transcriptomic studies of mammalian genomes have revealed the presence of a considerable population of non-coding RNA molecules among the transcripts expressed. One such non-coding RNA molecule is long non-coding RNA (lncRNA). However, the function of lncRNAs in gene regulation is not well understood; moreover, finding conserved lncRNA across species is a challenging task. Therefore, we propose a novel approach to identify conserved lncRNAs and functionally annotate these molecules. Results In this study, we exploited existing myogenic transcriptome data and identified conserved lncRNAs in mice and humans. We identified the lncRNAs expressing differentially between the early and later stages of muscle development. Differential expression of these lncRNAs was confirmed experimentally in cultured mouse muscle C2C12 cells. We utilized the three-dimensional architecture of the genome and identified topologically associated domains for these lncRNAs. Additionally, we correlated the expression of genes in domains for functional annotation of these trans-lncRNAs in myogenesis. Using this approach, we identified conserved lncRNAs in myogenesis and functionally annotated them. Conclusions With this novel approach, we identified the conserved lncRNAs in myogenesis in humans and mice and functionally annotated them. The method identified a large number of lncRNAs are involved in myogenesis. Further studies are required to investigate the reason for the conservation of the lncRNAs in human and mouse while their sequences are dissimilar. Our approach can be used to identify novel lncRNAs conserved in different species and functionally annotated them.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4615 ◽  
Author(s):  
Lan Jiang ◽  
Qingqing Wang ◽  
Jue Yu ◽  
Vinita Gowda ◽  
Gabriel Johnson ◽  
...  

The budgerigar (Melopsittacus undulatus) is one of the most widely studied parrot species, serving as an excellent animal model for behavior and neuroscience research. Until recently, it was unknown how sexual differences in the behavior, physiology, and development of organisms are regulated by differential gene expression. MicroRNAs (miRNAs) are endogenous short non-coding RNA molecules that can post-transcriptionally regulate gene expression and play a critical role in gonadal differentiation as well as early development of animals. However, very little is known about the role gonadal miRNAs play in the early development of birds. Research on the sex-biased expression of miRNAs in avian gonads are limited, and little is known aboutM. undulatus. In the current study, we sequenced two small non-coding RNA libraries made from the gonads of adult male and female budgerigars using Illumina paired-end sequencing technology. We obtained 254 known and 141 novel miRNAs, and randomly validated five miRNAs. Of these, three miRNAs were differentially expressed miRNAs and 18 miRNAs involved in sexual differentiation as determined by functional analysis with GO annotation and KEGG pathway analysis. In conclusion, this work is the first report of sex-biased miRNAs expression in the budgerigar, and provides additional sequences to the avian miRNAome database which will foster further functional genomic research.


2019 ◽  
Vol 10 (6) ◽  
pp. 3044-3056 ◽  
Author(s):  
Jianting Li ◽  
Lin Lei ◽  
Fayin Ye ◽  
Yun Zhou ◽  
Hui Chang ◽  
...  

As a group of non-coding RNA molecules, microRNAs have recently become more well-known due to their pivotal role in gene regulation.


2005 ◽  
Vol 386 (12) ◽  
pp. 1219-1238 ◽  
Author(s):  
Jörg Vogel ◽  
Cynthia Mira Sharma

AbstractSmall non-coding RNAs (sRNAs) have attracted considerable attention as an emerging class of gene expression regulators. In bacteria, a few regulatory RNA molecules have long been known, but the extent of their role in the cell was not fully appreciated until the recent discovery of hundreds of potential sRNA genes in the bacteriumEscherichia coli. Orthologs of theseE. colisRNA genes, as well as unrelated sRNAs, were also found in other bacteria. Here we review the disparate experimental approaches used over the years to identify sRNA molecules and their genes in prokaryotes. These include genome-wide searches based on the biocomputational prediction of non-coding RNA genes, global detection of non-coding transcripts using microarrays, and shotgun cloning of small RNAs (RNomics). Other sRNAs were found by either co-purification with RNA-binding proteins, such as Hfq or CsrA/RsmA, or classical cloning of abundant small RNAs after size fractionation in polyacrylamide gels. In addition, bacterial genetics offers powerful tools that aid in the search for sRNAs that may play a critical role in the regulatory circuit of interest, for example, the response to stress or the adaptation to a change in nutrient availability. Many of the techniques discussed here have also been successfully applied to the discovery of eukaryotic and archaeal sRNAs.


Parasitology ◽  
2012 ◽  
Vol 139 (5) ◽  
pp. 669-679 ◽  
Author(s):  
GUOFENG CHENG ◽  
YOUXIN JIN

SUMMARYMicroRNAs (miRNAs) are small, endogenous non-coding RNA molecules that regulate gene expression post-transcriptionally by targeting the 3′ untranslated region (3′ UTR) of messenger RNAs. Since the discovery of the first miRNA in Caenorhabditis elegans, important regulatory roles for miRNAs in many key biological processes including development, cell proliferation, cell differentiation and apoptosis of many organisms have been described. Hundreds of miRNAs have been identified in various multicellular organisms and many are evolutionarily conserved. Schistosomes are multi-cellular eukaryotes with a complex life-cycle that require genes to be expressed and regulated precisely. Recently, miRNAs have been identified in two major schistosome species, Schistosoma japonicum and S. mansoni. These miRNAs are likely to play critical roles in schistosome development and gene regulation. Here, we review recent studies on schistosome miRNAs and discuss the potential roles of miRNAs in schistosome development and gene regulation. We also summarize the current status for targeting miRNAs and the potential of this approach for therapy against schistosomiasis.


Author(s):  
W. C Sin ◽  
X Hong ◽  
J Bechberger ◽  
C.C Naus

Although genetic mutations are usually responsible for the initial tumor formation and progression, changes in the microenvironment also have a critical role in facilitating this process. Many ''untransformed'' cells infiltrate the tumors, and recent evidence suggests cancer cells can ‘reprogram’ normal cells by miRNAs, which are small, non-coding RNA molecules that regulate several protein targets. One prominent feature of glioma pathology is massive gliosis, an inflammatory response consisting of reactive astrocytes, in and around the tumor. We show that expression of Cx43, a major gap junction protein in astrocytes, is significantly enhanced in astrocytes at the tumor border. Using a mouse model consisting of syngeneic intracranial implantation of GL261 glioma cells into Nestin-Cre:Cx43fl/fl mice in which Cx43 is selectively eliminated in astrocytes, we demonstrate that reduction of astrocytic Cx43 decreases the dissemination of glioma cells from the tumor core. Similarly, knocking down Cx43 in astrocytes also reduces glioma invasion in a co-culture of glioma cells and astrocytes. By comparing the microRNA profiles of the astrocytes before and after co-culture with human glioma cells, we have identified a miR-5096 that appears to reprogram astrocytes to enhance the invasiveness of glioma cells. We are now examining whether we can prevent glioma cells from invading the brain and establishing recurrent secondary tumors by stopping the exchange of materials between glioma cells and astrocytes through eliminating Cx43 channel activity.


2021 ◽  
Vol 22 (14) ◽  
pp. 7526
Author(s):  
Fu Peng ◽  
Huali Fan ◽  
Sui Li ◽  
Cheng Peng ◽  
Xiaoqi Pan

In the last decades, a kind of small non-coding RNA molecules, called as microRNAs, has been applied as negative regulators in various types of cancer treatment through down-regulation of their targets. More recent studies exert that microRNAs play a critical role in the EMT process of cancer, promoting or inhibiting EMT progression. Interestingly, accumulating evidence suggests that pure compounds from natural plants could modulate deregulated microRNAs to inhibit EMT, resulting in the inhibition of cancer development. This small essay is on the purpose of demonstrating the significance and function of microRNAs in the EMT process as oncogenes and tumor suppressor genes according to studies mainly conducted in the last four years, providing evidence of efficient target therapy. The review also summarizes the drug candidates with the ability to restrain EMT in cancer through microRNA regulation.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 902
Author(s):  
Eva Costanzi ◽  
Carolina Simioni ◽  
Gabriele Varano ◽  
Cinzia Brenna ◽  
Ilaria Conti ◽  
...  

Extracellular vesicles (EVs) have attracted interest as mediators of intercellular communication following the discovery that EVs contain RNA molecules, including non-coding RNA (ncRNA). Growing evidence for the enrichment of peculiar RNA species in specific EV subtypes has been demonstrated. ncRNAs, transferred from donor cells to recipient cells, confer to EVs the feature to regulate the expression of genes involved in differentiation, proliferation, apoptosis, and other biological processes. These multiple actions require accuracy in the isolation of RNA content from EVs and the methodologies used play a relevant role. In liver, EVs play a crucial role in regulating cell–cell communications and several pathophysiological events in the heterogeneous liver class of cells via horizontal transfer of their cargo. This review aims to discuss the rising role of EVs and their ncRNAs content in regulating specific aspects of hepatocellular carcinoma development, including tumorigenesis, angiogenesis, and tumor metastasis. We analyze the progress in EV-ncRNAs’ potential clinical applications as important diagnostic and prognostic biomarkers for liver conditions.


Reproduction ◽  
2014 ◽  
Vol 148 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Fulu Dong ◽  
Yuan Zhang ◽  
Fei Xia ◽  
Yi Yang ◽  
Sidong Xiong ◽  
...  

MicroRNAs (miRNAs) are non-coding RNA molecules of about 22 nucleotides that involved in post-transcriptional gene regulation. Evidence indicates that miRNAs play essential roles in endometriosis, pre-eclampsia, infertility and other reproductive system diseases. However, whether miRNAs are involved in recurrent spontaneous abortion (RSA) is unclear. In this work, we analysed the miRNA expression profiles in six pairs of villus or decidua from RSA patients and normal pregnancy (NP) women using a human miRNA microarray. Some of the chip results were confirmed by RT-qPCR. In the villi of RSA patients, expression of hsa-miR-184, hsa-miR-187 and hsa-miR-125b-2 was significantly higher, while expression of hsa-miR-520f, hsa-miR-3175 and hsa-miR-4672 was significantly lower, comparing with those of NP control. As well, a total of five miRNAs (hsa-miR-517c, hsa-miR-519a-1, hsa-miR-522, hsa-miR-520h and hsa-miR-184) were upregulated in the decidua of RSA patients. The target genes of these differentially expressed miRNAs were predicted by miRWalk, and we speculate a network of miRNA regulating RSA by target genes function on adhesion, apoptosis and angiogenesis. Our study may help clarify the molecular mechanisms which are involved in the progression of RSA, and provide a reference for future research.


2018 ◽  
Vol 38 (1) ◽  
Author(s):  
Jin-yan Wang ◽  
Qian Zhang ◽  
Dan-dan Wang ◽  
Wei Yan ◽  
Huan-huan Sha ◽  
...  

MiRNAs, small non-coding RNA molecules, were recognized to be associated with the incidence and development of diverse neoplasms. MiRNAs were small non-coding RNAs that could regulate post-transcriptional level by binding to 3′-UTR of target mRNAs. Amongst which, miR-29a was demonstrated that it had significant impact on oncogenicity in various neoplasms through binding to critical genes which enhanced or inhibited the progression of cancers. MiR-29a participated in kinds of physiological and pathological processes, including virus replication, cell proliferation, differentiation, apoptosis, fibrosis, angiogenesis, tumorigenicity, metastasis, drug-resistance, and so on. According to its sufficient sensitivity and specificity, many studies showed that miR-29a might serve as a potential therapeutic target and promising biomarker in various tumors. In this review, we discussed the functions of miR-29a and its potential application in the diagnosis, treatment and stages of carcinoma, which could provide additional insight to develop a novel therapeutic strategy.


Sign in / Sign up

Export Citation Format

Share Document