Glutathione-Responsive Multifunctional Nanoparticles Based on Mannose-Modified Pillar[5]arene for Targeted Antibiotic Delivery against Intracellular Methicillin-Resistant S. aureus

Author(s):  
Haibo Peng ◽  
Beibei Xie ◽  
Xianfeng Cen ◽  
Jiaojiao Dai ◽  
Yuanwei Dai ◽  
...  

MRSA can evade the immune system once they are engulfed by phagocytic host cells. This protects them against the bactericidal action of antibiotics and allows the infection to remain latent...

Author(s):  
Jing Qiao ◽  
Shuolin Cui ◽  
May Xiong

Bacteria can evade the immune system once they are engulfed by phagocytic host cells. This protects them against the bactericidal action of antibiotics and allows the infection to remain latent...


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1086
Author(s):  
Francois Helle ◽  
Lynda Handala ◽  
Marine Bentz ◽  
Gilles Duverlie ◽  
Etienne Brochot

Extracellular vesicles have recently emerged as a novel mode of viral transmission exploited by naked viruses to exit host cells through a nonlytic pathway. Extracellular vesicles can allow multiple viral particles to collectively traffic in and out of cells, thus enhancing the viral fitness and diversifying the transmission routes while evading the immune system. This has been shown for several RNA viruses that belong to the Picornaviridae, Hepeviridae, Reoviridae, and Caliciviridae families; however, recent studies also demonstrated that the BK and JC viruses, two DNA viruses that belong to the Polyomaviridae family, use a similar strategy. In this review, we provide an update on recent advances in understanding the mechanisms used by naked viruses to hijack extracellular vesicles, and we discuss the implications for the biology of polyomaviruses.


Author(s):  
Tanvir Bamra ◽  
Taj Shafi ◽  
Sushmita Das ◽  
Manjay Kumar ◽  
Manas Ranjan Dikhit ◽  
...  

Summary StatementLeishmania secretes over 151 proteins during in vitro cultivation. Cellular functions of one such novel protein: mevalonate kinase is discussed here; signifying its importance in Leishmania infection.Visceral Leishmaniasis is a persistent infection, caused by Leishmania donovani in Indian subcontinent. This persistence is partly due to phagocytosis and evasion of host immune response. The underlying mechanism involves secretory proteins of Leishmania parasite; however, related studies are meagre. We have identified a novel secretory Leishmania donovani glycoprotein, Mevalonate kinase (MVK), and shown its importance in parasite internalization and immuno-modulation. In our studies, MVK was found to be secreted maximum after 1 h temperature stress at 37°C. Its secretion was increased by 6.5-fold in phagolysosome-like condition (pH ~5.5, 37°C) than at pH ~7.4 and 25°C. Treatment with MVK modulated host immune system by inducing interleukin-10 and interleukin-4 secretion, suppressing host’s ability to kill the parasite. Peripheral blood mononuclear cell (PBMC)-derived macrophages infected with mevalonate kinase-overexpressing parasites showed an increase in intracellular parasite burden in comparison to infection with vector control parasites. Mechanism behind the increase in phagocytosis and immunosuppression was found to be phosphorylation of mitogen-activated protein (MAP) kinase pathway protein, Extracellular signal-regulated kinases-1/2, and actin scaffold protein, cortactin. Thus, we conclude that Leishmania donovani Mevalonate kinase aids in parasite engulfment and subvert the immune system by interfering with signal transduction pathways in host cells, which causes suppression of the protective response and facilitates their persistence in the host. Our work elucidates the involvement of Leishmania in the process of phagocytosis which is thought to be dependent largely on macrophages and contributes towards better understanding of host pathogen interactions.


2019 ◽  
Author(s):  
Wenfa Ng

The immune checkpoint plays an important role in keeping immune cells in check for protecting tissues and organs from attack by the body’s own immune system. Similar concepts also apply in how cancer cells managed to fool immune cells through the surface display of particular antigens that mimic those exhibited by normal body cells. Specifically, cancer cells display antigens that bind to receptors on immune cells that subsequently prevent an attack on the cancer cells. Such binding between cancer antigens and immune cell receptors can be prevented through the use of checkpoint inhibitors antibodies specific for particular receptors on immune cells; thereby, unleashing immune cells to mount an immune response against cancer cells. While demonstrating good remissions in many patients where tumours shrunk substantially after administration of checkpoint inhibitors, cases exist where an overactivated immune system cause harm to organs and tissues culminating in multiple organ failure. Analysis of such toxicity effects of checkpoint inhibitors revealed that generic nature of targeted immune receptor plays a pivotal role in determining extent of side effects. Specifically, if the target immune receptor participates in checkpoints that prevent immune cells from attacking host cells, unleashing such receptors in cancer therapy may have untoward effects on patient’s health. Hence, the goal should be the selection of immune cell receptor specific to cancer cell antigens and which does not bind antigens or ligands displayed by the body’s cells. Such receptors would provide ideal targets for the development of checkpoint inhibitor antibodies for unleashing immune cells against cancer cells. To search for non-generic receptors that bind cancer cell antigens only, a combined computational and experimental approach could be used where ensemble of surface antigens on cancer cells and available receptors on immune cells could be profiled by biochemical assays. Downstream purification of ligands and receptors would provide for both structural elucidation and amino acid sequencing useful for bioinformatic search of homologous sequences. Knowledge of the antigens’ and receptors’ structures and amino acid sequence would subsequently serve as inputs to computational algorithms that models molecular docking events between receptor and antigen. This paves the way for heterologous expression of putative ligand and receptor in cell lines cultured in co-culture format for assessing binding between ligand and receptor, and more importantly, its physiological effects. Ability of immune receptor to bind to ligands on normal cells could also be assessed. Similar co-culture studies could be conducted with cancer cells and different immune cell types to check for reproducibility of observed effect in cell lines. Finally, antibodies could be raised for candidate receptors whose inhibition would not result in systemic attack of immune cells on host cells.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Wenjin Zheng ◽  
Qing Xu ◽  
Yiyuan Zhang ◽  
Xiaofei E ◽  
Wei Gao ◽  
...  

Abstract Background In the past decades, researchers have demonstrated the critical role of Toll-like receptors (TLRs) in the innate immune system. They recognize viral components and trigger immune signal cascades to subsequently promote the activation of the immune system. Main body Herpesviridae family members trigger TLRs to elicit cytokines in the process of infection to activate antiviral innate immune responses in host cells. This review aims to clarify the role of TLRs in the innate immunity defense against herpesviridae, and systematically describes the processes of TLR actions and herpesviridae recognition as well as the signal transduction pathways involved. Conclusions Future studies of the interactions between TLRs and herpesviridae infections, especially the subsequent signaling pathways, will not only contribute to the planning of effective antiviral therapies but also provide new molecular targets for the development of antiviral drugs.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4620 ◽  
Author(s):  
Marina A. Dobrovolskaia

Vaccines and immunotherapies involve a variety of technologies and act through different mechanisms to achieve a common goal, which is to optimize the immune response against an antigen. The antigen could be a molecule expressed on a pathogen (e.g., a disease-causing bacterium, a virus or another microorganism), abnormal or damaged host cells (e.g., cancer cells), environmental agent (e.g., nicotine from a tobacco smoke), or an allergen (e.g., pollen or food protein). Immunogenic vaccines and therapies optimize the immune response to improve the eradication of the pathogen or damaged cells. In contrast, tolerogenic vaccines and therapies retrain or blunt the immune response to antigens, which are recognized by the immune system as harmful to the host. To optimize the immune response to either improve the immunogenicity or induce tolerance, researchers employ different routes of administration, antigen-delivery systems, and adjuvants. Nanocarriers and adjuvants are of particular interest to the fields of vaccines and immunotherapy as they allow for targeted delivery of the antigens and direct the immune response against these antigens in desirable direction (i.e., to either enhance immunogenicity or induce tolerance). Recently, nanoparticles gained particular attention as antigen carriers and adjuvants. This review focuses on a particular subclass of nanoparticles, which are made of nucleic acids, so-called nucleic acid nanoparticles or NANPs. Immunological properties of these novel materials and considerations for their clinical translation are discussed.


2017 ◽  
Vol 91 (6) ◽  
Author(s):  
Angela K. Berger ◽  
Bradley E. Hiller ◽  
Deepti Thete ◽  
Anthony J. Snyder ◽  
Encarnacion Perez ◽  
...  

ABSTRACT Necroptosis, a regulated form of necrotic cell death, requires the activation of the RIP3 kinase. Here, we identify that infection of host cells with reovirus can result in necroptosis. We find that necroptosis requires sensing of the genomic RNA within incoming virus particles via cytoplasmic RNA sensors to produce type I interferon (IFN). While these events that occur prior to the de novo synthesis of viral RNA are required for the induction of necroptosis, they are not sufficient. The induction of necroptosis also requires late stages of reovirus infection. Specifically, efficient synthesis of double-stranded RNA (dsRNA) within infected cells is required for necroptosis. These data indicate that viral RNA interfaces with host components at two different stages of infection to induce necroptosis. This work provides new molecular details about events in the viral replication cycle that contribute to the induction of necroptosis following infection with an RNA virus. IMPORTANCE An appreciation of how cell death pathways are regulated following viral infection may reveal strategies to limit tissue destruction and prevent the onset of disease. Cell death following virus infection can occur by apoptosis or a regulated form of necrosis known as necroptosis. Apoptotic cells are typically disposed of without activating the immune system. In contrast, necroptotic cells alert the immune system, resulting in inflammation and tissue damage. While apoptosis following virus infection has been extensively investigated, how necroptosis is unleashed following virus infection is understood for only a small group of viruses. Here, using mammalian reovirus, we highlight the molecular mechanism by which infection with a dsRNA virus results in necroptosis.


2007 ◽  
Vol 7 ◽  
pp. 1073-1081 ◽  
Author(s):  
Luigi F. Agnati ◽  
Giuseppina Leo ◽  
Susanna Genedani ◽  
Diego Guidolin ◽  
Nicola Andreoli ◽  
...  

It has been demonstrated that some viruses, such as the cytomegalovirus, code for G-protein coupled receptors not only to elude the immune system, but also to redirect cellular signaling in the receptor networks of the host cells. In view of the existence of receptor-receptor interactions, the hypothesis is introduced that these viral-coded receptors not only operate as constitutively active monomers, but also can affect other receptor function by interacting with receptors of the host cell. Furthermore, it is suggested that viruses could also insert not single receptors (monomers), but clusters of receptors (receptor mosaics), altering the cell metabolism in a profound way. The prevention of viral receptor-induced changes in host receptor networks may give rise to novel antiviral drugs that counteract viral-induced disease.


2004 ◽  
Vol 199 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Tim Schmitter ◽  
Franziska Agerer ◽  
Lisa Peterson ◽  
Petra Münzner ◽  
Christof R. Hauck

Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) are used by several human pathogens to anchor themselves to or invade host cells. Interestingly, human granulocytes express a specific isoform, CEACAM3, that participates together with CEACAM1 and CEACAM6 in the recognition of CEACAM-binding microorganisms. Here we show that CEACAM3 can direct efficient, opsonin-independent phagocytosis of CEACAM-binding Neisseria, Moraxella, and Haemophilus species. CEACAM3- but not CEACAM6-mediated uptake is blocked by dominant-negative versions of the small GTPase Rac. Moreover, CEACAM3 engagement triggers membrane recruitment and increased GTP loading of Rac that are not observed upon bacterial binding to CEACAM6. Internalization and Rac stimulation are also inhibited by compromising the integrity of an immunoreceptor tyrosine-based activation motif (ITAM)–like sequence in the cytoplasmic tail of CEACAM3 or by interference with Src family protein tyrosine kinases that phosphorylate CEACAM3. In contrast to interfering with CEACAM6, blockage of CEACAM3-mediated events reduces the ability of primary human granulocytes to internalize and eliminate CEACAM-binding bacteria, indicating an important role of CEACAM3 in the control of human-specific pathogens by the innate immune system.


Sign in / Sign up

Export Citation Format

Share Document