Tuning the Selectivity of Highly Sensitive Chemiresistive Nanoparticle Networks by Encapsulation with Metal-Organic Frameworks

Author(s):  
Alishba Tanya John ◽  
Krishnan Murugappan ◽  
Mahdiar Taheri ◽  
David Russell Nisbet ◽  
Antonio Tricoli

Developing highly selective chemiresistive gas sensors is of great importance for non-invasive health diagnosis and environmental monitoring. There is a need for new materials and robust techniques to selectively detect...

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1552 ◽  
Author(s):  
Weber ◽  
Graniel ◽  
Balme ◽  
Miele ◽  
Bechelany

Improving the selectivity of gas sensors is crucial for their further development. One effective route to enhance this key property of sensors is the use of selective nanomembrane materials. This work aims to present how metal-organic frameworks (MOFs) and thin films prepared by atomic layer deposition (ALD) can be applied as nanomembranes to separate different gases, and hence improve the selectivity of gas sensing devices. First, the fundamentals of the mechanisms and configuration of gas sensors will be given. A selected list of studies will then be presented to illustrate how MOFs and ALD materials can be implemented as nanomembranes and how they can be implemented to improve the operational performance of gas sensing devices. This review comprehensively shows the benefits of these novel selective nanomaterials and opens prospects for the sensing community.


RSC Advances ◽  
2021 ◽  
Vol 11 (39) ◽  
pp. 23975-23984
Author(s):  
Xue Yang ◽  
Yixia Ren ◽  
Hongmei Chai ◽  
Xiufang Hou ◽  
Zhixiang Wang ◽  
...  

Four fluorescent 2D Zn-MOFs based on a flexible triangular ligand and linear N-donor ligands are hydrothermally prepared and used to detect nitrobenzene in aqueous solution with high sensitivity, demonstrating their potential as fluorescent sensors.


2021 ◽  
Author(s):  
Rubén A. Fritz ◽  
Yamil J. Colón ◽  
Felipe Herrera

The discovery and design of new materials with competitive optical frequency conversion efficiencies can accelerate the development of scalable photonic quantum technologies.


Crystals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 325 ◽  
Author(s):  
Joshua Sosa ◽  
Timothy Bennett ◽  
Katherine Nelms ◽  
Brandon Liu ◽  
Roberto Tovar ◽  
...  

The inherent porous nature and facile tunability of metal–organic frameworks (MOFs) make them ideal candidates for use in multiple fields. MOF hybrid materials are derived from existing MOFs hybridized with other materials or small molecules using a variety of techniques. This led to superior performance of the new materials by combining the advantages of MOF components and others. In this review, we discuss several hybridization methods for the preparation of various MOF hybrids with representative examples from the literature. These methods include covalent modifications, noncovalent modifications, and using MOFs as templates or precursors. We also review the applications of the MOF hybrids in the fields of catalysis, drug delivery, gas storage and separation, energy storage, sensing, and others.


2021 ◽  
Author(s):  
Zheng Li ◽  
Shuquan Chang ◽  
Haiqian Zhang ◽  
Yong Hu ◽  
Yulong Huang ◽  
...  

Here, we constructed Pb-free Cu-DABDT-MOFs-based (DABDT = 2,5-diamino-1,4-benzenedithiol dihydrochloride) X-ray detectors. Combined with the advantage of high activation energy, Cu-DABDT-MOFs-based detector can effectively generate and capture electron under X-ray exposure...


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3323 ◽  
Author(s):  
Jae-Hyoung Lee ◽  
Thanh-Binh Nguyen ◽  
Duy-Khoi Nguyen ◽  
Jae-Hun Kim ◽  
Jin-Young Kim ◽  
...  

The gas sensing properties of two novel series of Mg-incorporated metal–organic frameworks (MOFs), termed Mg-MOFs-I and -II, were assessed. The synthesized iso-reticular type Mg-MOFs exhibited good crystallinity, high thermal stability, needle-shape morphology and high surface area (up to 2900 m2·g−1), which are promising for gas sensing applications. Gas-sensing studies of gas sensors fabricated from Mg-MOFs-II revealed better sensing performance, in terms of the sensor dynamics and sensor response, at an optimal operating temperature of 200 °C. The MOF gas sensor with a larger pore size and volume showed shorter response and recovery times, demonstrating the importance of the pore size and volume on the kinetic properties of MOF-based gas sensors. The gas-sensing results obtained in this study highlight the potential of Mg-MOFs gas sensors for the practical monitoring of toxic gases in a range of environments.


2016 ◽  
Vol 40 (5) ◽  
pp. 4654-4661 ◽  
Author(s):  
Ji-Na Hao ◽  
Bing Yan

Ln3+-functionalized MOFs with tunable color and white-light emission were fabricated and developed as luminescent sensors for anions and small molecules.


Sign in / Sign up

Export Citation Format

Share Document