scholarly journals Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells

2002 ◽  
Vol 364 (1) ◽  
pp. 309-315 ◽  
Author(s):  
Michael GUPPY ◽  
Peter LEEDMAN ◽  
XinLin ZU ◽  
Victoria RUSSELL

For the past 70 years the dominant perception of cancer metabolism has been that it is fuelled mainly by glucose (via aerobic glycolysis) and glutamine. Consequently, investigations into the diagnosis, treatment and the basic metabolism of cancer cells have been directed by this perception. However, the data on cancer metabolism are equivocal, and in this study we have sought to clarify the issue. Using an innovative system we have measured the total ATP turnover of the MCF-7 breast cancer cell line, the contributions to this turnover by oxidative and glycolytic ATP production and the contributions to the oxidative component by glucose, lactate, glutamine, palmitate and oleate. The total ATP turnover over approx. 5days was 26.8μmol of ATP·107 cells−1·h−1. ATP production was 80% oxidative and 20% glycolytic. Contributions to the oxidative component were approx. 10% glucose, 14% glutamine, 7% palmitate, 4% oleate and 65% from unidentified sources. The contribution by glucose (glycolysis and oxidation) to total ATP turnover was 28.8%, glutamine contributed 10.7% and glucose and glutamine combined contributed 40%. Glucose and glutamine are significant fuels, but they account for less than half of the total ATP turnover. The contribution of aerobic glycolysis is not different from that in a variety of other non-transformed cell types.

Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 913 ◽  
Author(s):  
Hye-Young Min ◽  
Honglan Pei ◽  
Seung Yeob Hyun ◽  
Hye-Jin Boo ◽  
Hyun-Ji Jang ◽  
...  

Metabolic rewiring to utilize aerobic glycolysis is a hallmark of cancer. However, recent findings suggest the role of mitochondria in energy generation in cancer cells and the metabolic switch to oxidative phosphorylation (OXPHOS) in response to the blockade of glycolysis. We previously demonstrated that the antitumor effect of gracillin occurs through the inhibition of mitochondrial complex II-mediated energy production. Here, we investigated the potential of gracillin as an anticancer agent targeting both glycolysis and OXPHOS in breast and lung cancer cells. Along with the reduction in adenosine triphosphate (ATP) production, gracillin markedly suppresses the production of several glycolysis-associated metabolites. A docking analysis and enzyme assay suggested phosphoglycerate kinase 1 (PGK1) is a potential target for the antiglycolytic effect of gracillin. Gracillin reduced the viability and colony formation ability of breast cancer cells by inducing apoptosis. Gracillin displayed efficacious antitumor effects in mice bearing breast cancer cell line or breast cancer patient-derived tumor xenografts with no overt changes in body weight. An analysis of publicly available datasets further suggested that PGK1 expression is associated with metastasis status and poor prognosis in patients with breast cancer. These results suggest that gracillin is a natural anticancer agent that inhibits both glycolysis and mitochondria-mediated bioenergetics.


2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


2021 ◽  
Vol 11 (2) ◽  
pp. 326-332
Author(s):  
Le Ma ◽  
Zhenyu Liu ◽  
Zhimin Fan

Breast cancer is one of the most prevailing cancers in females, while the cancerous heterogeneity hinders its early diagnosis and subsequent therapy. miR-143-3p is a critical mediator in malignancy development and tumorigenesis as a tumor suppressor. Its role in various tumor entities has been investigated, such as colon cancer and breast cancer. Using MCF-7 breast cancer cell model, we planned to explore the underlying mechanisms of miR-143/KLF-5 axis in retarding breast cancer cells growth. Bioinformatics analysis searched the target KLF5 of miR-143, and the miR-143-targeted mimic and inhibitor were employed to detect the changes of KLF5. After transfection of mimic miR-143, the CCK-8 reagent assessed cell proliferation. Based on optimal stimulation time, miR-143 stimulation model was established, followed by determining expression of KLF5, EGFR and PCNA via western blot and qPCR. Eventually, siRNA-KLF5 was applied to silencing KLF5 level to evaluate its role in MCF-7 cells. The transcription and translation levels of KLF5 were diminished in miR-143-mimic transfected MCF-7 cells, while enhanced in miR-143-inhibitor transfected MCF-7 cells. When MCF-7 cells were transfected with miR-143-mimic at different time points, 48 hours was found to be the optimal transfection time, with reduced transcription and translation levels of KLF5, EGFR and PCNA. The transcription and translation levels of PNCA and EGFR were declined after silencing KLF5 by siRNA. miR-143/KLF5 axis could retard the proliferation of MCF-7 breast cancer cells.


2020 ◽  
Vol 19 ◽  
pp. 153303382097967
Author(s):  
Jin Zhang ◽  
Nan Shao ◽  
Xiaoyu Yang ◽  
Chuanbo Xie ◽  
Yawei Shi ◽  
...  

The microRNA-200 (miR-200) family has been reported to be vital for the inhibition of epithelial-to-mesenchymal transition (EMT) in tumor cells. The miR-200 family represents a complex multi-factorial regulatory network which has not been well described in breast cancer. This study aimed to clarify the underlying regulatory association between IL-8 and miR-200 family in the process of EMT in breast cancer cell. In estrogen-receptor (ER) positive breast cancer cell line MCF-7, IL-8 overexpression cells were performed by lentivirus transfection as endogenous regulation with additional exogenous IL-8 stimulation. Transient overexpressions of miR-200 family were performed after endogenous or exogenous IL-8 overexpression in MCF-7 cells. IL-8 knockdown cells were constructed via siRNA and shRNA transfection in triple negative breast cancer cell line MDA-MB-231. N-cadherin, vimentin and ZEB2 were down-regulated and E-cadherin was up-regulated in IL-8 knockdown group compared with control group. On the other hand, N-cadherin, vimentin and ZEB2 were up-regulated and E-cadherin was down-regulated in IL-8 overexpression group compared with control group. This indicated IL-8 promotes EMT in breast cancer cells. Transwell assay showed that IL-8 increased the migration and invasiveness of tumor cells. Furthermore, we performed transient overexpression of miR-200 family after endogenous or exogenous IL-8 overexpression in MCF-7 cells, which showed that the miR-200 family could inhibit EMT induced by IL-8. IL-8 promoted EMT via downregulation of miR-200 family expression in breast cancer cells and increases tumor cell migration and invasion.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2616
Author(s):  
Katharina Kolb ◽  
Johanna Hellinger ◽  
Maike Kansy ◽  
Florian Wegwitz ◽  
Gerd Bauerschmitz ◽  
...  

Aggressive and mesenchymal-transformed breast cancer cells show high expression levels of Rho GTPase activating protein 29 (ARHGAP29), a negative regulator of RhoA. ARHGAP29 was the only one of 32 GTPase-activating enzymes whose expression significantly increased after the induction of mesenchymal transformation in breast cancer cells. Therefore, we investigated the influence of ARHGAP29 on the invasiveness of aggressive and mesenchymal-transformed breast cancer cells. After knock-down of ARHGAP29 using siRNA, invasion of HCC1806, MCF-7-EMT, and T-47D-EMT breast cancer cells was significantly reduced. This could be explained by reduced inhibition of RhoA and a consequent increase in stress fiber formation. Proliferation of the breast cancer cell line T-47D-EMT was slightly increased by reduced expression of ARHGAP29, whereas that of HCC1806 and MCF-7-EMT significantly increased. Using interaction analyses we found that AKT1 is a possible interaction partner of ARHGAP29. Therefore, the expression of AKT1 after siRNA knock-down of ARHGAP29 was tested. Reduced ARHGAP29 expression was accompanied by significantly reduced AKT1 expression. However, the ratio of active pAKT1 to total AKT1 remained unchanged or was significantly increased after ARHGAP29 knock-down. Our results show that ARHGAP29 could be an important factor in the invasion of aggressive and mesenchymal-transformed breast cancer cells. Further research is required to fully understand the underlying mechanisms.


2018 ◽  
Vol 10 (1) ◽  
pp. 335
Author(s):  
Sandy Vitria Kurniawan ◽  
Lies Sugiarti ◽  
Septelia Inawati Wanandi ◽  
Melva Louisa

Objective: This study was designed to analyze the role of piperine in modulating P-glycoprotein mRNA expression when added in combination withtamoxifen to breast cancer cells in culture.Methods: MCF-7 breast cancer cells were treated with 1 μM tamoxifen with or without piperine (12.5, 25, or 50 μM) or verapamil 50 μM (P-glycoproteininhibitor positive control) for up to 12 days. We assessed the cell viability and isolated total RNA from them. We quantified P-glycoprotein expressionsusing quantitative reverse transcription polymerase chain reaction.Results: Administration of various doses of piperine decreased MCF-7 breast cancer cell viability. Piperine, when given in combination with tamoxifen,decreased the expression of P-glycoprotein mRNA in cells compared with the expression in cells treated with tamoxifen only. The effects were shownto be dose dependent.Conclusion: Piperine prevents the development of breast cancer cell tamoxifen resistance, probably through its inhibition of P-glycoprotein expression.


2020 ◽  
Vol 20 (13) ◽  
pp. 1582-1591 ◽  
Author(s):  
Thoria Diab ◽  
Samar S. Alkafaas ◽  
Thanaa I. Shalaby ◽  
Mohamed Hessien

Background and Objective: Although the anticancer potentials of water-insoluble drugs are improved by nanoformulation, other intervening factors may contribute in the drug efficacy. This work was designated to explore the effect of paclitaxel-loaded Poly(Lactic-co-Glycolic Acid) (PLGA) nanoparticles on the viability of cancer cells, the expression of Taxol Resistance gene I (TXR1) and paclitaxel metabolizing genes. Methods: Paclitaxel loaded PLGA Nanoparticles (PTX-NPs) were prepared, physically characterized and used in the treatment of breast adenocarcinoma cells (MCF-7) and hepatoma cells (HepG2). Cells viability and apoptosis were investigated. In parallel, RNA was isolated, reverse transcribed and used to monitor the expression levels of TXR1, CYP 3A4 and CYP2C8 genes. Results: PTX-NPs were characterized by transmission electron microscopy to be of a nano-size sphere-like shape. FTIR analysis revealed good coupling between PTX and PLGA. The encapsulation efficiency was 99% and the drug release demonstrated a progressive releasing phase followed by slower and sustained releasing phases. Although HepG2 cells demonstrated more resistance to PTX than MCF-7 cells, both cell types were more responsive to PTX-NPS compared to PTX. The IC50 values decreased from 19.3 to 6.7 in breast cancer cells and from 42.5 to 13.1μg/ml in hepatoma cells. The apoptosis was the key mechanism in both cells, where at least 44% of cells underwent apoptosis. The expression of TXR1 decreased when either cells were treated with PTX-NPs, respectively, meanwhile the expressions of CYP3A4 and CYP2C8 were increased. Conclusion: Taken together, this in vitro study reports the associations between the enhanced responsiveness of MCF-7 and HepG2 cells to PLGA-loaded paclitaxel nanoparticles and the accompanying decrease in the cells resistance to the PTX and its enhanced metabolism.


Open Biology ◽  
2016 ◽  
Vol 6 (6) ◽  
pp. 160122 ◽  
Author(s):  
Darrin Gao ◽  
Ramtin Rahbar ◽  
Eleanor N. Fish

In earlier studies, we showed that CCL5 enhances proliferation and survival of MCF-7 breast cancer cells in an mTOR-dependent manner and we provided evidence that, for T cells, CCL5 activation of CCR5 results in increased glycolysis and enhanced ATP production. Increases in metabolic activity of cancer cells, specifically increased glycolytic activity and increased expression of glucose transporters, are associated with tumour progression. In this report, we provide evidence that CCL5 enhances the proliferation of human breast cancer cell lines (MDA-MB-231, MCF-7) and mouse mammary tumour cells (MMTV-PyMT), mediated by CCR5 activation. Concomitant with enhanced proliferation we show that CCL5 increases cell surface expression of the glucose transporter GLUT1, and increases glucose uptake and ATP production by these cells. Blocking CCL5-inducible glucose uptake abrogates the enhanced proliferation induced by CCL5. We provide evidence that increased glucose uptake is associated with enhanced glycolysis, as measured by extracellular acidification. Moreover, CCL5 enhances the invasive capacity of these breast cancer cells. Using metabolomics, we demonstrate that the metabolic signature of CCL5-treated primary mouse mammary tumour cells reflects increased anabolic metabolism. The implications are that CCL5–CCR5 interactions in the tumour microenvironment regulate metabolic events, specifically glycolysis, to promote tumour proliferation and invasion.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yu Zhang ◽  
Bo Yuan ◽  
Baolin Bian ◽  
Haiyu Zhao ◽  
Anna Kiyomi ◽  
...  

Development of new therapeutic strategies for breast cancer is urgently needed due to the sustained emergence of drug resistance, tumor recurrence and metastasis. To gain a novel insight into therapeutic approaches to fight against breast cancer, the cytocidal effects of hellebrigenin (Helle) and arenobufagin (Areno) were investigated in human estrogen receptor (ER)-positive breast cancer cell line MCF-7 and triple-negative breast cancer cell line MDA-MB-231. Helle exhibited more potent cytotoxicity than Areno in both cancer cells, and MCF-7 cells were more susceptible to both drugs in comparison with MDA-MB-231 cells. Apoptotic-like morphological characteristics, along with the downregulation of the expression level of Bcl-2 and Bcl-xL and the upregulation of the expression level of Bad, were observed in Helle-treated MCF-7 cells. Helle also caused the activation of caspase-8, caspase-9, along with the cleavage of poly(ADP-ribose) polymerase in MCF-7 cells. Helle-mediated necrosis-like phenotype, as evidenced by the increased propidium iodide (PI)-positive cells was further observed. G2/M cell cycle arrest was also induced by Helle in the cells. Upregulation of the expression level of p21 and downregulation of the expression level of cyclin D1, cyclin E1, cdc25C and survivin were observed in MCF-7 cells treated with Helle and occurred in parallel with G2/M arrest. Autophagy was triggered in MCF-7 cells and the addition of wortmannin or 3-MA, two well-known autophagy inhibitors, slightly but significantly rescued the cells. Furthermore, similar alterations of some key molecules associated with the aforementioned biological phenomena were observed in MDA-MB-231 cells. Intriguingly, the numbers of PI-positive cells in Helle-treated MCF-7 cells were significantly reduced by wortmannin and 3-MA, respectively. In addition, Helle-triggered G2/M arrest was significantly corrected by wortmannin, suggesting autophagy induction contributed to Helle-induced cytotoxicity of breast cancer cells by modulating necrosis and cell cycle arrest. Collectively, our results suggested potential usefulness of both Helle and Areno in developing therapeutic strategies to treat patients with different types of breast cancer, especially ER-positive breast cancer.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5058
Author(s):  
Marcella Bonanomi ◽  
Noemi Salmistraro ◽  
Giulia Fiscon ◽  
Federica Conte ◽  
Paola Paci ◽  
...  

Rewiring glucose metabolism toward aerobic glycolysis provides cancer cells with a rapid generation of pyruvate, ATP, and NADH, while pyruvate oxidation to lactate guarantees refueling of oxidized NAD+ to sustain glycolysis. CtPB2, an NADH-dependent transcriptional co-regulator, has been proposed to work as an NADH sensor, linking metabolism to epigenetic transcriptional reprogramming. By integrating metabolomics and transcriptomics in a triple-negative human breast cancer cell line, we show that genetic and pharmacological down-regulation of CtBP2 strongly reduces cell proliferation by modulating the redox balance, nucleotide synthesis, ROS generation, and scavenging. Our data highlight the critical role of NADH in controlling the oncogene-dependent crosstalk between metabolism and the epigenetically mediated transcriptional program that sustains energetic and anabolic demands in cancer cells.


Sign in / Sign up

Export Citation Format

Share Document