scholarly journals Androgen response element of the glycine N-methyltransferase gene is located in the coding region of its first exon

2013 ◽  
Vol 33 (5) ◽  
Author(s):  
Cheng-Ming Lee ◽  
Chia-Hung Yen ◽  
Tsai-Yu Tzeng ◽  
Yu-Zen Huang ◽  
Kuan-Hsien Chou ◽  
...  

Androgen plays an important role in the pathogenesis of PCa (prostate cancer). Previously, we identified GNMT (glycine N-methyltransferase) as a tumour susceptibility gene and characterized its promoter region. Besides, its enzymatic product-sarcosine has been recognized as a marker for prognosis of PCa. The goals of this study were to determine whether GNMT is regulated by androgen and to map its AREs (androgen response elements). Real-time PCR analyses showed that R1881, a synthetic AR (androgen receptor) agonist induced GNMT expression in AR-positive LNCaP cells, but not in AR-negative DU145 cells. In silico prediction showed that there are four putative AREs in GNMT-ARE1, ARE2 and ARE3 are located in the intron 1 and ARE4 is in the intron 2. Consensus ARE motif deduced from published AREs was used to identify the fifth ARE-ARE5 in the coding region of exon 1. Luciferase reporter assay found that only ARE5 mediated the transcriptional activation of R1881. ARE3 overlaps with a YY1 [Yin and Yang 1 (motif (CaCCATGTT, +1118/+1126)] that was further confirmed by antibody supershift and ChIP (chromatin immunoprecipitation) assays. EMSA (electrophoretic mobility shift assay) and ChIP assay confirmed that AR interacts with ARE5 in vitro and in vivo. In summary, GNMT is an AR-targeted gene with its functional ARE located at +19/+33 of the first exon. These results are valuable for the study of the influence of androgen on the gene expression of GNMT especially in the pathogenesis of cancer.

2012 ◽  
Vol 194 (18) ◽  
pp. 4904-4919 ◽  
Author(s):  
Lara L. Hause ◽  
Kevin S. McIver

ABSTRACTThe Mga regulator ofStreptococcus pyogenesdirectly activates the transcription of a core regulon that encodes virulence factors such as M protein (emm), C5a peptidase (scpA), and streptococcal inhibitor of complement (sic) by directly binding to a 45-bp binding site as determined by an electrophoretic mobility shift assay (EMSA) and DNase I protection. However, by comparing the nucleotide sequences of all established Mga binding sites, we found that they exhibit only 13.4% identity with no discernible symmetry. To determine the core nucleotides involved in functional Mga-DNA interactions, the M1T1 Pemm1binding site was altered and screened for nucleotides important for DNA bindingin vitroand for transcriptional activation using a plasmid-based luciferase reporterin vivo. Following this analysis, 34 nucleotides within the Pemm1binding site that had an effect on Mga binding, Mga-dependent transcriptional activation, or both were identified. Of these critical nucleotides, guanines and cytosines within the major groove were disproportionately identified clustered at the 5′ and 3′ ends of the binding site and with runs of nonessential adenines between the critical nucleotides. On the basis of these results, a Pemm1minimal binding site of 35 bp bound Mga at a level comparable to the level of binding of the larger 45-bp site. Comparison of Pemmwith directed mutagenesis performed in the M1T1 Mga-regulated PscpAand Psicpromoters, as well as methylation interference analysis of PscpA, establish that Mga binds to DNA in a promoter-specific manner.


2018 ◽  
Vol 11 (5) ◽  
pp. 371-382 ◽  
Author(s):  
Limin Liu ◽  
Peng Zhang ◽  
Ming Bai ◽  
Lijie He ◽  
Lei Zhang ◽  
...  

Abstract Hypoxia plays an important role in the genesis and progression of renal fibrosis. The underlying mechanisms, however, have not been sufficiently elucidated. We examined the role of p53 in hypoxia-induced renal fibrosis in cell culture (human and rat renal tubular epithelial cells) and a mouse unilateral ureteral obstruction (UUO) model. Cell cycle of tubular cells was determined by flow cytometry, and the expression of profibrogenic factors was determined by RT-PCR, immunohistochemistry, and western blotting. Chromatin immunoprecipitation and luciferase reporter experiments were performed to explore the effect of HIF-1α on p53 expression. We showed that, in hypoxic tubular cells, p53 upregulation suppressed the expression of CDK1 and cyclins B1 and D1, leading to cell cycle (G2/M) arrest (or delay) and higher expression of TGF-β, CTGF, collagens, and fibronectin. p53 suppression by siRNA or by a specific p53 inhibitor (PIF-α) triggered opposite effects preventing the G2/M arrest and profibrotic changes. In vivo experiments in the UUO model revealed similar antifibrotic results following intraperitoneal administration of PIF-α (2.2 mg/kg). Using gain-of-function, loss-of-function, and luciferase assays, we further identified an HRE3 region on the p53 promoter as the HIF-1α-binding site. The HIF-1α–HRE3 binding resulted in a sharp transcriptional activation of p53. Collectively, we show the presence of a hypoxia-activated, p53-responsive profibrogenic pathway in the kidney. During hypoxia, p53 upregulation induced by HIF-1α suppresses cell cycle progression, leading to the accumulation of G2/M cells, and activates profibrotic TGF-β and CTGF-mediated signaling pathways, causing extracellular matrix production and renal fibrosis.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Yuxiang Lin ◽  
Jie Zhang ◽  
Yan Li ◽  
Wenhui Guo ◽  
Lili Chen ◽  
...  

Abstract Background Cytidine nucleotide triphosphate synthase 1 (CTPS1) is a CTP synthase which play critical roles in DNA synthesis. However, its biological regulation and mechanism in triple-negative breast cancer (TNBC) has not been reported yet. Methods The expression of CTPS1 in TNBC tissues was determined by GEO, TCGA databases and immunohistochemistry (IHC). The effect of CTPS1 on TNBC cell proliferation, migration, invasion, apoptosis and tumorigenesis were explored in vivo and in vitro. In addition, the transcription factor Y-box binding protein 1 (YBX1) was identified by bioinformatics methods, dual luciferase reporter and chromatin immunoprecipitation (CHIP) assays. Pearson correlation analysis was utilized to assess the association between YBX1 and CTPS1 expression. Results CTPS1 expression was significantly upregulated in TNBC tissues and cell lines. Higher CTPS1 expression was correlated with a poorer disease-free survival (DFS) and overall survival (OS) in TNBC patients. Silencing of CTPS1 dramatically inhibited the proliferation, migration, invasion ability and induced apoptosis of MDA-MB-231 and HCC1937 cells. Xenograft tumor model also indicated that CTPS1 knockdown remarkably reduced tumor growth in mice. Mechanically, YBX1 could bind to the promoter of CTPS1 to promote its transcription. Furthermore, the expression of YBX1 was positively correlated with CTPS1 in TNBC tissues. Rescue experiments confirmed that the enhanced cell proliferation and invasion ability induced by YBX1 overexpression could be reversed by CTPS1 knockdown. Conclusion Our data demonstrate that YBX1/CTPS1 axis plays an important role in the progression of TNBC. CTPS1 might be a promising prognosis biomarker and potential therapeutic target for patients with triple-negative breast cancer.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Zuolin Li ◽  
Jia-ling Ji ◽  
Linli Lv ◽  
Yan Yang ◽  
Tao-tao Tang ◽  
...  

Abstract Background and Aims Acute kidney injury (AKI) is increasingly recognized as a major risk factor for progression to CKD. However, the mechanisms governing AKI to CKD progression are poorly understood. Hypoxia is a key player in the pathophysiology of the AKI to CKD transition. Thus, we aimed to investigate the exact mechanisms of AKI to CKD progression mediated by hypoxia. Method Mild ischemic injury and severe ischemic injury (AKI-to-CKD transition) were established by clamping renal pedicle for 30 and 40 minutes, respectively. Meanwhile, the mice model of AKI-to-CKD transition was treated with HIF-1α inhibitor, PX-478. In vitro, PHD inhibition and combined PHD with FIH inhibition mimic the HIF-1α activation caused by mild or severe hypoxia, respectively. Besides the human proximal tubular epithelial cell line HK-2, tubular cells were isolated from mice for primary culture. KLF5 knockdown, FIH and HIF-1α C-terminal transcriptional activation domain (C-TAD) overexpression in tubular cells were achieved by Lentiviral transfection. Immunocoprecipitation was used to explore the relationship between the HIF-1α and FIH-1. Luciferase reporter assay was used to investigate whether KLF5 was regulated transcriptionally by HIF-1α C-TAD. To explore the roles of FIH-1 and HIF-1α C-TAD in vivo, FIH-1 and HIF-1α C-TAD overexpression (Lentivirus-mediated) was given after severe ischemic injury or mild ischemic injury via tail vein injection, respectively. Results AKI to CKD progression was highly associated with the time-course expression of tubular HIF-1α in severe ischemia/reperfusion injury. Interestingly, ameliorated AKI-to-CKD transition was observed by treating PX-478, which destabilized HIF-1α. In vitro, fibrogenesis could be induced by combined PHD with FIH inhibitor treatment in TEC. More interestingly, alleviated fibrogenesis could be achieved by knockdown of KLF5 and overexpression of FIH, respectively, while HIF-1α C-TAD overexpression promoted fibrogenesis in tubular cells. Immunocoprecipitation results indicated that HIF-1α and FIH-1 are interactive. Furthermore, we demonstrated that KLF5 could be regulated transcriptionally by HIF-1α C-TAD by luciferase reporter assay. In vivo, AKI to CKD progression was ameliorated significantly when mice model of AKI-to-CKD transition intervened with FIH-1 overexpression (Lentivirus-mediated). However, treatment of HIF-1α C-TAD (Lentivirus-mediated) in mild ischemic injury model could promote progression of CKD significantly. Conclusion FIH-1 mediated HIF-1α C-TAD activation was the key mechanism of AKI to CKD transition by transcriptionally regulating the KLF5 pathway in tubules. Blockade of FIH-1 mediated HIF-1α C-TAD in tubules may serve as a novel therapeutic approach to ameliorate AKI to CKD progression.


1992 ◽  
Vol 12 (8) ◽  
pp. 3490-3498 ◽  
Author(s):  
N Hosokawa ◽  
K Hirayoshi ◽  
H Kudo ◽  
H Takechi ◽  
A Aoike ◽  
...  

Transcriptional activation of human heat shock protein (HSP) genes by heat shock or other stresses is regulated by the activation of a heat shock factor (HSF). Activated HSF posttranslationally acquires DNA-binding ability. We previously reported that quercetin and some other flavonoids inhibited the induction of HSPs in HeLa and COLO 320DM cells, derived from a human colon cancer, at the level of mRNA accumulation. In this study, we examined the effects of quercetin on the induction of HSP70 promoter-regulated chloramphenicol acetyltransferase (CAT) activity and on the binding of HSF to the heat shock element (HSE) by a gel mobility shift assay with extracts of COLO 320DM cells. Quercetin inhibited heat-induced CAT activity in COS-7 and COLO 320DM cells which were transfected with plasmids bearing the CAT gene under the control of the promoter region of the human HSP70 gene. Treatment with quercetin inhibited the binding of HSF to the HSE in whole-cell extracts activated in vivo by heat shock and in cytoplasmic extracts activated in vitro by elevated temperature or by urea. The binding of HSF activated in vitro by Nonidet P-40 was not suppressed by the addition of quercetin. The formation of the HSF-HSE complex was not inhibited when quercetin was added only during the binding reaction of HSF to the HSE after in vitro heat activation. Quercetin thus interacts with HSF and inhibits the induction of HSPs after heat shock through inhibition of HSF activation.


1995 ◽  
Vol 311 (3) ◽  
pp. 769-773 ◽  
Author(s):  
M A Bevilacqua ◽  
M C Faniello ◽  
P D′Agostino ◽  
B Quaresima ◽  
M T Tiano ◽  
...  

In this paper, we examine the mechanisms that regulate the expression of the heavy (H) ferritin subunit in the colon carcinoma Caco-2 cell line allowed to differentiate spontaneously in vitro. The differentiation process of these cells in continuous culture is accompanied by an accumulation of the mRNA coding for the apoferritin H chain. The analysis of Caco-2 subclones stably transfected with an H-chain promoter-chloramphenicol acetyltransferase (CAT) construct revealed that the mRNA increase is paralleled by an enhanced transcription of the H gene, driven by the -100 to +4 region of the H promoter. The H gene transcriptional activation seems to be a specific feature of differentiated Caco-2 cells, since the activity of other promoters did not change upon differentiation. The -100 to +4 region of the H promoter binds a transcription factor called Bbf (B-box binding factor); electrophoretic-mobility-shift-assay analyses showed that the retarded complex due to Bbf-H promoter interaction is significantly increased in the differentiated cells. We propose that the activation of H-ferritin gene expression may be associated with the establishment of a differentiated phenotype in Caco-2 cells, and that the H-ferritin gene transcriptional up-regulation is accompanied by a modification in the activity of the transcription factor Bbf.


Author(s):  
Baochi Ou ◽  
Hongze Sun ◽  
Jingkun Zhao ◽  
Zhuoqing Xu ◽  
Yuan Liu ◽  
...  

Abstract Background Polo-like kinase 3 (PLK3) has been documented as a tumor suppressor in several types of malignancies. However, the role of PLK3 in colorectal cancer (CRC) progression and glucose metabolism remains to be known. Methods The expression of PLK3 in CRC tissues was determined by immunohistochemistry. Cells proliferation was examined by EdU, CCK-8 and in vivo analyses. Glucose metabolism was assessed by detecting lactate production, glucose uptake, mitochondrial respiration, extracellular acidification rate, oxygen consumption rate and ATP production. Chromatin immunoprecipitation, luciferase reporter assays and co-immunoprecipitation were performed to explore the signaling pathway. Specific targeting by miRNAs was determined by luciferase reporter assays and correlation with target protein expression. Results PLK3 was significantly downregulated in CRC tissues and its low expression was correlated with worse prognosis of patients. In vitro and in vivo experiments revealed that PLK3 contributed to growth inhibition of CRC cells. Furthermore, we demonstrated that PLK3 impeded glucose metabolism via targeting Hexokinase 2 (HK2) expression. Mechanically, PLK3 bound to Heat shock protein 90 (HSP90) and facilitated its degradation, which led to a significant decrease of phosphorylated STAT3. The downregulation of p-STAT3 further suppressed the transcriptional activation of HK2. Moreover, our investigations showed that PLK3 was directly targeted by miR-106b at post-transcriptional level in CRC cells. Conclusion This study suggests that PLK3 inhibits glucose metabolism by targeting HSP90/STAT3/HK2 signaling and PLK3 may serve as a potential therapeutic target in colorectal cancer.


1987 ◽  
Vol 7 (12) ◽  
pp. 4522-4534 ◽  
Author(s):  
R Ng ◽  
J Carbon

Centromeres on chromosomes in the yeast Saccharomyces cerevisiae contain approximately 140 base pairs (bp) of DNA. The functional centromere (CEN) region contains three important sequence elements (I, PuTCACPuTG; II, 78 to 86 bp of high-AT DNA; and III, a conserved 25-bp sequence with internal bilateral symmetry). Various point mutations or deletions in the element III region have a profound effect on CEN function in vivo, indicating that this DNA region is a key protein-binding site. This has been confirmed by the use of two in vitro assays to detect binding of yeast proteins to DNA fragments containing wild-type or mutationally altered CEN3 sequences. An exonuclease III protection assay was used to demonstrate specific binding of proteins to the element III region of CEN3. In addition, a gel DNA fragment mobility shift assay was used to characterize the binding reaction parameters. Sequence element III mutations that inactivate CEN function in vivo also prevent binding of proteins in the in vitro assays. The mobility shift assay indicates that double-stranded DNAs containing sequence element III efficiently bind proteins in the absence of sequence elements I and II, although the latter sequences are essential for optimal CEN function in vivo.


2009 ◽  
Vol 425 (1) ◽  
pp. 235-243 ◽  
Author(s):  
Raquel  Castro-Prego ◽  
Mónica Lamas-Maceiras ◽  
Pilar Soengas ◽  
Isabel Carneiro ◽  
Isabel González-Siso ◽  
...  

Ixr1p from Saccharomyces cerevisiae has been previously studied because it binds to DNA containing intrastrand cross-links formed by the anticancer drug cisplatin. Ixr1p is also a transcriptional regulator of anaerobic/hypoxic genes, such as SRP1/TIR1, which encodes a stress-response cell wall manoprotein, and COX5B, which encodes the Vb subunit of the mitochondrial complex cytochrome c oxidase. However, factors controlling IXR1 expression remained unexplored. In the present study we show that IXR1 mRNA levels are controlled by oxygen availability and increase during hypoxia. In aerobiosis, low levels of IXR1 expression are maintained by Rox1p repression through the general co-repressor complex Tup1–Ssn6. Ixr1p itself is necessary for full IXR1 expression under hypoxic conditions. Deletion analyses have identified the region in the IXR1 promoter responsible for this positive auto-control (nucleotides −557 to −376). EMSA (electrophoretic mobility-shift assay) and ChIP (chromatin immunoprecipitation) assays show that Ixr1p binds to the IXR1 promoter both in vitro and in vivo. Ixr1p is also required for hypoxic repression of ROX1 and binds to its promoter. UPC2 deletion has opposite effects on IXR1 and ROX1 transcription during hypoxia. Ixr1p is also necessary for resistance to oxidative stress generated by H2O2. IXR1 expression is moderately activated by H2O2 and this induction is Yap1p-dependent. A model of IXR1 regulation as a relay for sensing different signals related to change in oxygen availability is proposed. In this model, transcriptional adaptation from aerobiosis to hypoxia depends on ROX1 and IXR1 cross-regulation.


2009 ◽  
Vol 43 (3) ◽  
pp. 121-130 ◽  
Author(s):  
Sue Ing Quek ◽  
Woon Khiong Chan

The cytochrome P450scc (cholesterol side-chain cleavage enzyme) encoded by CYP11A1 catalyzes the first step in steroidogenesis by converting cholesterol to pregnenolone, and thus, controls the synthesis rate of steroid hormones. In mammals, steroidogenic factor 1 (SF1) has been implicated in the cAMP-mediated transcriptional activation of CYP11A1 promoter. In zebrafish, Ff1b has been established as the homolog of SF1. To assess the dependency of cyp11a1 expression on Ff1b, the putative promoter of zebrafish cyp11a1, spanning 1.7 kb, was isolated and bioinformatic analysis revealed two conserved FF1 response elements (FREs) that potentially bind Ff1b. Transfection studies in cell lines of different lineages confirmed that this promoter fragment contained the necessary regulatory elements required for its basal transcription. Truncation and mutagenesis studies performed in Y1 adrenocortical cells revealed that only the proximal FRE was essential for transcriptional activation. Electrophoretic mobility shift assay, however, indicated that Ff1b bound to both FREs, while their in vivo occupancy was confirmed using a chromatin immunoprecipitation assay. Lastly, the cyp11a1 promoter was able to direct EGFP expression specifically to the interrenal gland and genital ridge when transiently expressed in microinjected zebrafish embryos, and the promoter activity is potentiated by ff1b overexpression as measured from luciferase reporter activity in zebrafish embryos.


Sign in / Sign up

Export Citation Format

Share Document