scholarly journals CircRNA circPDSS1 promotes bladder cancer by down-regulating miR-16

2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Qinnan Yu ◽  
Pei Liu ◽  
Guangye Han ◽  
Xiangdong Xue ◽  
Derong Ma

Abstract Background: Circular RNA (circRNA) circPDSS1 is a recently identified oncogene in gastric cancer, while its roles in other types of cancer are unknown. We investigated the functions of circPDSS1 in urothelial bladder cancer (UBC). Materials and methods: Seventy-two patients (50 males and 22 females, age 38–69 years, mean: 52.3 ± 6.3 years) with UBC were enrolled in Gansu Provincial People’s Hospital from August 2015 to August 2018. RT-qPCR was used to measure gene expression levels in both biopsies from UBC patients and in vitro cultivated HT-1197 and UMUC3 cells. Cell transfections were performed to analyze gene interactions. Cell proliferation, transwell migration and invasion assays were performed to analyze the effects of transfections on HT-1197 and UMUC3 cell proliferation, migration and invasion, respectively. Results: We found that circPDSS1 was up-regulated in UBC. Expression levels of circPDSS1 were increased with increase in clinical stages. MiR-16 was down-regulated and correlated with circPDSS1 in UBC. Overexpression of circPDSS1 led to down-regulation of miR-16, while miR-16 overexpression failed to significantly affect circPDSS1. Overexpression of circPDSS1 led to increased proliferation, invasion and migration rates of UBC cells. Overexpression of miR-16 not only led to inhibited proliferation, invasion and migration of UBC cells, but also attenuated the effects of circPDSS1 overexpression. Conclusion: Therefore, circRNA circPDSS1 may promote UBC by down-regulating miR-16.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e23006-e23006 ◽  
Author(s):  
Yintao Li ◽  
Jinming Yu

e23006 Background: Tubulin Polymerization Promoting Protein Family Member 3, TPPP3, a member of the TPPP protein family, has been reported to play important roles in initiation and progression of human cancers, such as lung cancer. However, the expression and underlying function of TPPP3 in colorectal cancer (CRC) have not yet been fully clarified. Methods: In this study, the mRNA and protein levels of TPPP3 in 96 clinical CRC specimens were determined by RT-PCR and immunohistochemistry. The relation between TPPP3 expression and clinicopathologic characteristics and overall survival (OS) were evaluated. TPPP3 was stably knockdowned by shRNA. In addition, CCK-8、Colony formation、Flow cytometric、Transwell and Angiogenesis assay were to examine the biological function of TPPP3 in CRC cells in vitro. Results: We show that TPPP3 was significantly increased in CRC tissues and associated with aggressive factors and poor patient survival. Further experiments showed that knockdown of TPPP3 inhibited cell proliferation, migration and invasion and induced cell apoptosis in vitro. In addition, TPPP3 silencing resulted in a decrease of angiogenesis and S phase fraction. And TPPP3 significantly affected the invasion and migration of CRC cells via the expression of MMP-9, Rac-1 and E-cadherin. Conclusions: Our results suggested that TPPP3 played an important role in CRC progress and might serve as novel therapeutic targets for CRC treatment.


2020 ◽  
Author(s):  
Han Hong ◽  
Chengjun Sui ◽  
Tao Qian ◽  
Xiaoyong Xu ◽  
Xiang Zhu ◽  
...  

Abstract Background: Long-chain non-coding RNA (LncRNA) plays a key role in the biological processes of tumors. LncRNA CASC15 has been shown to be involved in the development of a variety of tumors. The study aimed to elucidate the mechanism of lncRNA CASC15 in the progression of hepatocellular carcinomas (HCC).Methods: qRT-PCR was used to detect the expression levels of CASC15, miR-2355-5p and Six1 mRNA in HCC tissues and cells. Six1 protein expression levels were detected by Western Blot. CCK-8 experiment, colony formation experiment, Edu staining and Transwell experiment analysis were used to analyze the effects of CASC15, miR-2355-5p and Six1 on cell proliferation, cell invasion and migration. The relationship between CASC15, miR-2355-5p and Six1 was analyzed using bioinformatics analysis and Luciferase.Result: CASC15 was raised in HCC tissues and HCC cells. Down-regulation of CASC15 inhibited the growth, migration, invasion and tumor growth of HCC cells. The expression level of miR-2355-5p was reduced in HCC tissues. In addition, miR-2355-5p inhibitor induced the growth, migration and invasion of HCC cells. MiR-2355-5p was predicted to be a downstream target of CASC15. The expression level of miR-2355-5p was negatively correlated with CASC15 in HCC tumor tissues. Six1 was predicted to be a downstream target of miR-30a-5p. In vitro and in vivo results showed that CASC15/miR-2355-5p can regulate Six1.Conclusion: LncCASC15 regulated the proliferation and invasion of Six1 by binding with miR-2355-5p in HCC, suggesting that CASC15 may be a potential target for HCC.


2020 ◽  
Vol 20 (10) ◽  
pp. 1197-1208
Author(s):  
Zhuo Ma ◽  
Kai Li ◽  
Peng Chen ◽  
Qizheng Pan ◽  
Xuyang Li ◽  
...  

Background: Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis remains the main cause of mortality in OS patients. MicroRNAs (miRNAs) play critical roles during cancer metastasis. Objective: Thus, elucidating the role of miRNA dysregulation in OS metastasis may provide novel therapeutic targets. Methods: The previous study found a low miR-134 expression level in the OS specimens compared with paracancer tissues. Overexpression of miR-134 stable cell lines was established. Cell viability assay, cell invasion and migration assay and apoptosis assay were performed to evaluate the role of miR-134 in OS in vitro. Results: We found that miR-134 overexpression inhibits cell proliferation, migration and invasion, and induces cell apoptosis in both MG63 and Saos-2 cell lines. Mechanistically, miR-134 targets the 3'-UTR of VEGFA and MYCN mRNA to silence its translation, which was confirmed by luciferase-reporter assay. The real-time PCR analysis illustrated that miR-134 overexpression decreases VEGFA and MYCN mRNA levels. Additionally, the overexpression of VEGFA or MYCN can partly attenuate the effects of miR-134 on OS cell migration and viability. Furthermore, the overexpression of miR-134 dramatically inhibits tumor growth in the human OS cell line xenograft mouse model in vivo. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-134 is regulated by Interferon Regulatory Factor (IRF1), which binds to its promoter and activates miR-134 expression. Conclusion: Our study demonstrates that IRF1 is a key player in the transcriptional control of miR-134, and it inhibits cell proliferation, invasion and migration in vitro and in vivo via targeting VEGFA and MYCN.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Suogang Wang ◽  
Geng Zhang ◽  
Wanxiang Zheng ◽  
Qin Xue ◽  
Di Wei ◽  
...  

Bladder cancer (BCa) threatens human health due to the high occurrence and mortality. Nowadays, more and more researchers focussed on the molecular mechanisms and biological functions of miRNAs in human cancers. The present study aims to study the biological role of miR-454-3p and miR-374b-5p in BCa. The expression levels of miR-454-3p and miR-374b-5p were detected in BCa tissues and cell lines by qRT-PCR analysis. Kaplan–Meier analysis revealed that the expression levels of miR-454-3p and miR-374b-5p were positively correlated with the overall survival (OS) rate of BCa patients. Gain-of-function assays were conducted to demonstrate the inhibitory effects of miR-454-3p and miR-374b-5p on the invasion, migration, and epithelial–mesenchymal transition (EMT) of BCa cells. Mechanically, ZEB2 was found to be a target of both miR-454-3p and miR-374b-5p. Rescue assays revealed that ZEB2 reversed the inhibitory effects of miR-454-3p and miR-374b-5p on the invasion and migration of BCa cell lines. In summary, miR-454-3p and miR-374b-5p negatively regulated invasion and migration of BCa cell lines via targetting ZEB2.


2020 ◽  
Author(s):  
Han Hong ◽  
Chengjun Sui ◽  
Tao Qian ◽  
Xiaoyong Xu ◽  
Xiang Zhu ◽  
...  

Abstract Background: Long-chain non-coding RNA (LncRNA) plays a key role in the biological processes of tumors. LncRNA CASC15 has been shown to be involved in the development of a variety of tumors. The study aimed to elucidate the mechanism of lncRNA CASC15 in the progression of hepatocellular carcinomas (HCC). Methods: qRT-PCR was used to detect the expression levels of CASC15, miR-2355-5p and Six1 mRNA in HCC tissues and cells. Six1 protein expression levels were detected by Western Blot. CCK-8 experiment, colony formation experiment, Edu staining and Transwell experiment analysis were used to analyze the effects of CASC15, miR-2355-5p and Six1 on cell proliferation, cell invasion and migration. The relationship between CASC15, miR-2355-5p and Six1 was analyzed using bioinformatics analysis and Luciferase. Result: CASC15 was raised in HCC tissues and HCC cells. Down-regulation of CASC15 inhibited the growth, migration, invasion and tumor growth of HCC cells. The expression level of miR-2355-5p was reduced in HCC tissues. In addition, miR-2355-5p inhibitor induced the growth, migration and invasion of HCC cells. MiR-2355-5p was predicted to be a downstream target of CASC15. The expression level of miR-2355-5p was negatively correlated with CASC15 in HCC tumor tissues. Six1 was predicted to be a downstream target of miR-30a-5p. In vitro and in vivo results showed that CASC15/miR-2355-5p can regulate Six1.Conclusion: LncCASC15 regulated the proliferation and invasion of Six1 by binding with miR-2355-5p in HCC, suggesting that CASC15 may be a potential target for HCC.


Zygote ◽  
2020 ◽  
Vol 28 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Yulei Zhang ◽  
Xiaoqin Chen

SummaryThe abnormal expression of lncRNAs and miRNAs has been found in the placentas of patients with preeclampsia (PE). Therefore, we determined the role of lncRNA FOXD2-AS1/miR-3127 in trophoblast cells. The expression of lncRNA FOXD2-AS1 was detected by qRT-PCR. The proliferation, migration and invasion ability of trophoblast cells were evaluated using CCK-8, wound healing and transwell assays. The target gene of lncRNA FOXD2-AS1 was determined by StarBase and luciferase reporter assays. Western blotting was used to analyze the expression of matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9). The results showed that FOXD2-AS1 affected trophoblast cell viability in vitro, while the expression of miR-3127 was decreased. FOXD2-AS1 silencing decreased the promotion effects on trophoblast cell induced by miR-3127 inhibition. In addition, FOXD2-AS1 and miR-3127 presented the same effect on MMP2 and MMP9 levels. lncRNA FOXD2-AS1 modulated trophoblast cell proliferation, invasion and migration through downregulating miR-3127 expression. Therefore, lncRNA FOXD2-AS1 could act as a latent therapeutic marker in preeclampsia.


2019 ◽  
Vol 14 (1) ◽  
pp. 440-447
Author(s):  
Chunhui Dong ◽  
Yihui Liu ◽  
Guiping Yu ◽  
Xu Li ◽  
Ling Chen

AbstractLBHD1 (C11ORF48) is one of the ten potential tumor antigens identified by immunoscreening the urinary bladder cancer cDNA library in our previous study. We suspect that its expression is associated with human bladder cancer. However, the exact correlation remains unclear. To address the potential functional relationship between LBHD1 and bladder cancer, we examined the LBHD1 expression at the mRNA and protein level in 5 different bladder cancer cell lines: J82, T24, 253J, 5637, and BLZ-211. LBHD1 high and low expressing cells were used to investigate the migration, invasion, and proliferation of bladder cancer cells following transfection of LBHD1 with siRNA and plasmids, respectively. Our experiment showed that the degree of gene expression was positively related to the migration and invasion of the cancer cells while it had little effect on cell proliferation. Knocking down LBHD1 expression with LBHD1 siRNA significantly attenuated cell migration and invasion in cultured bladder cancer cells, and overexpressing LBHD1 with LBHD1 cDNA plasmids exacerbated cell migration and invasion. Nevertheless, a difference in cell proliferation after transfection of LBHD1 siRNA and LBHD1 cDNA plasmids was not found. Our findings suggest that LBHD1 might play a role in cell migration and invasion.


2021 ◽  
pp. 1-9
Author(s):  
Huan Guo ◽  
Baozhen Zeng ◽  
Liqiong Wang ◽  
Chunlei Ge ◽  
Xianglin Zuo ◽  
...  

BACKGROUND: The incidence of lung cancer in Yunnan area ranks firstly in the world and underlying molecular mechanisms of lung cancer in Yunnan region are still unclear. We screened a novel potential oncogene CYP2S1 used mRNA microassay and bioinformation database. The function of CYP2S1 in lung cancer has not been reported. OBJECTIVE: To investigate the functions of CYP2S1 in lung cancer. METHODS: Immunohistochemistry and Real-time PCR were used to verify the expression of CYP2S1. Colony formation and Transwell assays were used to determine cell proliferation, invasion and migration. Xenograft assays were used to detected cell growth in vivo. RESULTS: CYP2S1 is significantly up-regulated in lung cancer tissues and cells. Knockdown CYP2S1 in lung cancer cells resulted in decrease cell proliferation, invasion and migration in vitro. Animal experiments showed downregulation of CYP2S1 inhibited lung cancer cell growth in vivo. GSEA analysis suggested that CYP2S1 played functions by regulating E2F targets and G2M checkpoint pathway which involved in cell cycle. Kaplan-Meier analysis indicated that patients with high CYP2S1 had markedly shorter event overall survival (OS) time. CONCLUSIONS: Our data demonstrate that CYP2S1 exerts tumor suppressor function in lung cancer. The high expression of CYP2S1 is an unfavorable prognostic marker for patient survival.


2020 ◽  
Author(s):  
Wei fang Yu ◽  
Jia Wang ◽  
Chao Li ◽  
Mingda Xuan ◽  
Shuangshuang Han ◽  
...  

Abstract Background: MicroRNA (miRNA) can affect tumor progression by regulating cell proliferation, apoptosis and metastasis. After miRNA microarray chip analysis of colorectal cancer (CRC) tissues and adjacent normal tissues, a significant upregulation of miR-17-5p expression was found in CRC tissues. However, the underlying mechanism of miR-17-5p in CRC is still unclear.Methods: The levels of miR-17-5p in 47 paired CRC and adjacent normal tissue samples were determined by quantitative real-time PCR (qRT-PCR). CCK-8, colony formation, flow cytometry and transwell assays were used to explore the biological effects of miR-17-5p on CRC cells. In addition, the transcriptome sequencing and miRNA target prediction software were employed to identify targets of miR-17-5p. Luciferase reporter detection was used to demonstrate the direct binding of target genes by miR-17-5p. The rescue experiment was conducted to investigate the biological function of target genes and regulatory mechanism of miR-17-5p on target genes.Results: The expression of miR-17-5p was significantly higher in CRC tissues than in adjacent normal tissues. In CRC group, the expression of miR-17-5p in cancer tissues with lymph node metastasis was higher compared with those without lymph node metastasis. Overexpression of miR-17-5p inhibited CRC cell apoptosis, as well as promoting proliferation, migration and invasion. We hypothesized that HSPB2 might be a target gene of miR-17-5p and validated for the first time that miR-17-5p binds directly to the 3’-UTR of HSPB2. In the rescue experiment, the tumor suppressive effect of HSPB2 was detected and miR-17-5p could promote cell proliferation, migration and invasion by targeting HSPB2.Conclusion: MiR-17-5p promotes invasion and migration by inhibiting HSPB2 in CRC, thereby implicating its potential as a novel diagnostic biomarker and therapeutic target for CRC.


2020 ◽  
Vol 168 (5) ◽  
pp. 547-555
Author(s):  
Jin Dou ◽  
Daoyuan Tu ◽  
Haijian Zhao ◽  
Xiaoyu Zhang

Abstract MiR-301a is as an oncogene involved in the regulation of gastric cancer (GC) progression, but the underlying mechanism is unclear. This study was to explore the lncRNA PCAT18/miR-301a/TP53INP1 axis in regulating the GC cell proliferation and metastasis. In the present study, GC tissues and cell lines were collected for the detection of PCAT18 expression. Herein, we found that PCAT18 is significantly decreases in human GC tissues and five GC cell lines. Overexpression of PCAT18 inhibits cell viability, invasion and migration of GC cells and tumour growth of GC xenograft tumours. PCAT18 negatively regulates the expression level of miR-301a. The interaction between PCAT18 and miR-301a is confirmed by RIP and RNA pull down. MiR-301a mimic increases cell viability and promotes cell migration and invasion and reverses the inhibitory action of PCAT18. TP53INP1 expression is negatively regulated by miR-301a and TP53INP1/miR-301a is involved in GC viability, migration and invasion. The promoting of PCAT18 on TP53INP1 expression is abolished by miR-301a overexpression. In conclusion, lncRNA PCAT18 acts as a tumour suppressor for GC and lncRNA PCAT18, miR-301a and TP53INP1 comprise a signal axis in regulating GC cell proliferation, migration and invasion.


Sign in / Sign up

Export Citation Format

Share Document