scholarly journals Commentary on: Screening of immunosuppressive cells from colorectal adenocarcinoma and identification of prognostic markers

2021 ◽  
Author(s):  
Kexin Chen ◽  
Zhen Zeng ◽  
Chunxiang Ma ◽  
Yuan Dang ◽  
Hu Zhang

Colorectal adenocarcinoma (COAD) is one subtype of colorectal carcinoma (CRC), whose development is associated with genetics, inappropriate immune response, and environmental factors. Although significant advances have been made in the treatment of COAD, the mortality rate remains high. It is a pressing need to explore novel therapeutic targets of COAD. Available evidence indicated that immune cell infiltration was correlated with cancer prognosis. To reveal the roles of immune cells in the COAD prognosis, a study published in Bioscience Reports by Li et al. (Bioscience Reports (2021) 41, https://doi.org/10.1042/BSR20203496) analyzed data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) dataset. It demonstrated a beneficial effect of Th17 cells in COAD prognosis. In addition, six hub genes (KRT23, ULBP2, ASRGL1, SERPINA1, SCIN, and SLC28A2) were identified to correlate with Th17 cells and COAD prognosis, suggesting one new therapy strategy and some predictive biomarkers of COAD. These findings reported by Li et al. may pave one way to explore the molecular mechanism of COAD further.

2021 ◽  
Author(s):  
Fazhan Li ◽  
Jun Zhou ◽  
Li Zedong ◽  
Leiyi Zhang

Background: Colorectal cancer (CRC) is the most common type of gastrointestinal malignant tumour. Colorectal adenocarcinoma (COAD)—the most common type of CRC—is particularly dangerous. The role of the immune system in the development of tumour-associated inflammation and cancer has received increasing attention recently. Methods: In this study, we compiled the expression profiles of 262 patients with complete follow-up data from the Cancer Genome Atlas (TCGA) database as an experimental group and selected 65 samples from the GEO dataset (of which 46 samples with M0) as a verification group. First, we screened the immune Th17 cells related to the prognosis of COAD. Subsequently, we identified Th17-cells-related hub genes by utilizing co-expression network analysis (WGCNA) and LASSO regression analysis. Six genes associated with the prognosis in patients with COAD were identified ,including : KRT23, ULBP2, ASRGL1, SERPINA1, SCIN, and SLC28A2. We constructed a clinical prediction model and analysed its predictive power. Results: The identified hub genes are involved in developing many diseases and closely linked to digestive disorders. Our results suggested that the hub genes could influence the prognosis of COAD by regulating Th17 cells’ infiltration. Conclusions: These newly discovered hub genes contribute to clarifying the mechanisms of COAD development and metastasis. Given that they promote COAD development, they may become new therapeutic targets and biomarkers of COAD.


Epigenomics ◽  
2019 ◽  
Vol 11 (13) ◽  
pp. 1501-1518 ◽  
Author(s):  
Guansheng Zhong ◽  
Weiyang Lou ◽  
Minya Yao ◽  
Chengyong Du ◽  
Haiyan Wei ◽  
...  

Aim: To identify novel competing endogenous RNA (ceRNA) network related to patients prognosis in breast cancer. Materials & methods: Dysregulated mRNA based on intersection of three Gene Expression Omnibus and The Cancer Genome Atlas datasets were analyzed by bioinformatics. Results: In total 72 upregulated and 208 downregulated genes were identified. Functional analysis showed that some pathways related to cancer were significantly enriched. By means of stepwise reverse prediction and validation from mRNA to lncRNA, 19 hub genes, nine key miRNA and four key lncRNAs were identified by expression and survival analysis. Ultimately, the coexpression analysis identified RRM2-let-7a-5p- SNHG16/ MAL2 as key ceRNA subnetwork associated with prognosis of breast cancer. Conclusion: We successfully constructed a novel ceRNA network, among which each component was significantly associated with breast cancer prognosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanding Zhao ◽  
Yadong Dong ◽  
Yongqi Sun ◽  
Chao Cheng

Melanoma is one of the most aggressive cancer types whose prognosis is determined by both the tumor cell-intrinsic and -extrinsic features as well as their interactions. In this study, we performed systematic and unbiased analysis using The Cancer Genome Atlas (TCGA) melanoma RNA-seq data and identified two gene signatures that captured the intrinsic and extrinsic features, respectively. Specifically, we selected genes that best reflected the expression signals from tumor cells and immune infiltrate cells. Then, we applied an AutoEncoder-based method to decompose the expression of these genes into a small number of representative nodes. Many of these nodes were found to be significantly associated with patient prognosis. From them, we selected two most prognostic nodes and defined a tumor-intrinsic (TI) signature and a tumor-extrinsic (TE) signature. Pathway analysis confirmed that the TE signature recapitulated cytotoxic immune cell related pathways while the TI signature reflected MYC pathway activity. We leveraged these two signatures to investigate six independent melanoma microarray datasets and found that they were able to predict the prognosis of patients under standard care. Furthermore, we showed that the TE signature was also positively associated with patients’ response to immunotherapies, including tumor vaccine therapy and checkpoint blockade immunotherapy. This study developed a novel computational framework to capture the tumor-intrinsic and -extrinsic features and identified robust prognostic and predictive biomarkers in melanoma.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Nathan D. Seligson ◽  
Richard D. Maradiaga ◽  
Colin M. Stets ◽  
Howard M. Katzenstein ◽  
Sherri Z. Millis ◽  
...  

AbstractSarcomas harboring EWSR1-NFATc2 fusions have historically been categorized and treated as Ewing sarcoma. Emerging evidence suggests unique molecular characteristics and chemotherapy sensitivities in EWSR1-NFATc2 fusion positive sarcomas. Comprehensive genomic profiles of 1024 EWSR1 fusion positive sarcomas, including 14 EWSR1-NFATc2 fusions, were identified in the FoundationCore® database. Additional data from the Gene Expression Omnibus, the Genomics of Drug Sensitivity in Cancer and The Cancer Genome Atlas datasets were included for analysis. EWSR1-NFATc2 fusion positive sarcomas were genomically distinct from traditional Ewing sarcoma and demonstrated upregulation of the mTOR pathway. We also present a case of a 58-year-old male patient with metastatic EWSR1-NFATc2 fusion positive sarcoma who achieved 47 months of disease stabilization when treated with combination mTOR and VEGF inhibition. EWSR1-NFATc2 fusion positive sarcomas are molecularly distinct entities with overactive mTOR signaling; which may be therapeutically targetable. These findings support the use of precision medicine in the Ewing family of tumors.


2021 ◽  
Vol 22 (5) ◽  
pp. 2442
Author(s):  
Qun Wang ◽  
Aurelia Vattai ◽  
Theresa Vilsmaier ◽  
Till Kaltofen ◽  
Alexander Steger ◽  
...  

Cervical cancer is primarily caused by the infection of high-risk human papillomavirus (hrHPV). Moreover, tumor immune microenvironment plays a significant role in the tumorigenesis of cervical cancer. Therefore, it is necessary to comprehensively identify predictive biomarkers from immunogenomics associated with cervical cancer prognosis. The Cancer Genome Atlas (TCGA) public database has stored abundant sequencing or microarray data, and clinical data, offering a feasible and reliable approach for this study. In the present study, gene profile and clinical data were downloaded from TCGA, and the Immunology Database and Analysis Portal (ImmPort) database. Wilcoxon-test was used to compare the difference in gene expression. Univariate analysis was adopted to identify immune-related genes (IRGs) and transcription factors (TFs) correlated with survival. A prognostic prediction model was established by multivariate cox analysis. The regulatory network was constructed and visualized by correlation analysis and Cytoscape, respectively. Gene functional enrichment analysis was performed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). A total of 204 differentially expressed IRGs were identified, and 22 of them were significantly associated with the survival of cervical cancer. These 22 IRGs were actively involved in the JAK-STAT pathway. A prognostic model based on 10 IRGs (APOD, TFRC, GRN, CSK, HDAC1, NFATC4, BMP6, IL17RD, IL3RA, and LEPR) performed moderately and steadily in squamous cell carcinoma (SCC) patients with FIGO stage I, regardless of the age and grade. Taken together, a risk score model consisting of 10 novel genes capable of predicting survival in SCC patients was identified. Moreover, the regulatory network of IRGs associated with survival (SIRGs) and their TFs provided potential molecular targets.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ritu Pandey ◽  
Muhan Zhou ◽  
Shariful Islam ◽  
Baowei Chen ◽  
Natalie K Barker ◽  
...  

AbstractWe investigated biomarker CEACAM6, a highly abundant cell surface adhesion receptor that modulates the extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDA). The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) RNA-Seq data from PDA patients were analyzed for CEACAM6 expression and evaluated for overall survival, association, enrichment and correlations. A CRISPR/Cas9 Knockout (KO) of CEACAM6 in PDA cell line for quantitative proteomics, mitochondrial bioenergetics and tumor growth in mice were conducted. We found CEACAM6 is over-expressed in primary and metastatic basal and classical PDA subtypes. Highest levels are in classical activated stroma subtype. CEACAM6 over-expression is universally a poor prognostic marker in KRAS mutant and wild type PDA. High CEACAM6 expression is associated with low cytolytic T-cell activity in both basal and classical PDA subtypes and correlates with low levels of T-REG markers. In HPAF-II cells knockout of CEACAM6 alters ECM-cell adhesion, catabolism, immune environment, transmembrane transport and autophagy. CEACAM6 loss increases mitochondrial basal and maximal respiratory capacity. HPAF-II CEACAM6−/− cells are growth suppressed by >65% vs. wild type in mice bearing tumors. CEACAM6, a key regulator affects several hallmarks of PDA including the fibrotic reaction, immune regulation, energy metabolism and is a novel therapeutic target in PDA.


2021 ◽  
Author(s):  
Mengjun Zhang ◽  
Hao Li ◽  
Yuan Liu ◽  
Siyu Hou ◽  
Ping Cui ◽  
...  

Abstract Background: The purpose of this study was to determine the value of MAFK as a biomarker of cervical cancer prognosis and to explore its methylation and possible cellular signaling pathways. Methods: We analyzed the cervical cancer data of The Cancer Genome Atlas (TCGA) through bioinformatics, including MAFK expression, methylation, prognosis and genome enrichment analysis. Results: MAFK expression was higher in cervical cancer tissues and was negatively correlated with the methylation levels of five CpG sites. MAFK is an independent prognostic factor of cervical cancer and is involved in the Nod-like receptor signaling pathway. CMap analysis screened four drug candidates for cervical cancer treatment. Conclusions: We confirmed that MAFK is a novel prognostic biomarker for cervical cancer and aberrant methylation may also affect MAFK expression and carcinogenesis. This study provides a new molecular target for the prognostic evaluation and treatment of cervical cancer.


2020 ◽  
Vol 40 (11) ◽  
Author(s):  
Wei Han ◽  
Biao Huang ◽  
Xiao-Yu Zhao ◽  
Guo-Liang Shen

Abstract Skin cutaneous melanoma (SKCM) is one of the most deadly malignancies. Although immunotherapies showed the potential to improve the prognosis for metastatic melanoma patients, only a small group of patients can benefit from it. Therefore, it is urgent to investigate the tumor microenvironment in melanoma as well as to identify efficient biomarkers in the diagnosis and treatments of SKCM patients. A comprehensive analysis was performed based on metastatic melanoma samples from the Cancer Genome Atlas (TCGA) database and ESTIMATE algorithm, including gene expression, immune and stromal scores, prognostic immune-related genes, infiltrating immune cells analysis and immune subtype identification. Then, the differentially expressed genes (DEGs) were obtained based on the immune and stromal scores, and a list of prognostic immune-related genes was identified. Functional analysis and the protein–protein interaction network revealed that these genes enriched in multiple immune-related biological processes. Furthermore, prognostic genes were verified in the Gene Expression Omnibus (GEO) databases and used to predict immune infiltrating cells component. Our study revealed seven immune subtypes with different risk values and identified T cells as the most abundant cells in the immune microenvironment and closely associated with prognostic outcomes. In conclusion, the present study thoroughly analyzed the tumor microenvironment and identified prognostic immune-related biomarkers for metastatic melanoma.


2018 ◽  
Vol 46 (3) ◽  
pp. 925-952 ◽  
Author(s):  
Rong-quan He ◽  
Wei-luan Cen ◽  
Jie-mei Cen ◽  
Wei-ning Cen ◽  
Jia-yi Li ◽  
...  

Background/Aims: Since the function of microRNA (miR)-210 in non-small cell lung cancer (NSCLC) remains unclear, we aimed to explore the clinical significance of miR-210 in NSCLC. Methods: NSCLC-related data from 1673 samples on Gene Expression Omnibus and 1090 samples on The Cancer Genome Atlas were obtained and analyzed. The expression level of miR-210 was validated via real-time quantitative PCR analysis with 125 paired clinical samples. A meta-analysis was performed to generate a comprehensive understanding of miR-210 expression and its clinical significance in NSCLC. In addition, bioinformatics analysis was also conducted to reveal the potential underlying mechanism of miR-210 action in NSCLC. Results: miR-210 expression was consistently elevated in NSCLC solid tissue samples. However, its expression was controversial in easily obtained body fluids (i.e., blood, plasma, and serum). Moreover, an overall pooled meta-analysis implied a comparatively higher level of miR-210 expression in NSCLC cancerous tissue than in normal control tissue (P < 0.001). In addition, a meta-analysis of outcome revealed a significant diagnostic capacity of miR-210 in NSCLC by detecting its expression in serum and sputum (area under the summary receiver operating characteristic curve 0.82 and 0.81, respectively). miR-210 overexpression was associated with poor progression-free survival (PFS) in NSCLC and was negatively related to overall survival and disease-free survival. Bioinformatic gene enrichment and annotation analyses showed that the target genes of miR-210 were greatly enriched in cell adhesion and plasma membrane, and three pathways were considered to be the main functional circuits of miR-210: renin secretion, the cGMP-PKG signaling pathway, and cell adhesion molecules. Conclusion: In NSCLC, miR-210 expression was elevated and overexpression indicated poor PFS. Expression level of miR-210 in serum and sputum showed significant diagnostic value for NSCLC.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e21177-e21177
Author(s):  
Puyuan Xing ◽  
Teng Li ◽  
Han Wang ◽  
Lin Yang ◽  
Guoqiang Wang ◽  
...  

e21177 Background: Tumor immune microenvironment (TIME) has been proved associated with response to immunotherapy(I/O). We hypothesized that screening potential mutation pattern which could significantly impact the tumor infiltrating lymphocytes(TILs) can help us to identify predictive biomarkers for I/O in Lung adenocarcinoma(LUAD). Methods: Multiple-dimensional data from The Cancer Genome Atlas LUAD cohort (n = 514) was used for building a mathematical model beween mutation signature and CD8+TIL score (based on MCP-counter). An independent public validation cohort (cohort 1: LUAD, n = 598) were used to assess the immunotherapeutic predictive performance of the potential mutation patterns. Results: Top 100 gene associated with CD8+TIL score were selected based on MC+ model which can provides the minimum non-convexity of the penalized loss given the level of bias. Seven TIME genes (SPTA1 coef 0.09; MET coef 0.02; HSD3B1 coef -0.00; STAT4 coef -0.01; EGFR coef -0.08; PIK3CB coef -0.08; KEAP1 coef -0.24) were generated by taking the intersection of the top 100 mutant genes and FoundationOne (F1) CDx NGS 315 genes panel and verified in cohort 1. Survival analysis showed that SPTA1mt was the only one that associated with both significantly longer PFS (median PFS 3.15 vs 2.89 months; HR 0.65; 95% CI 0.45 to 0.93; p = 0.02) and OS (median PFS 15.08 vs 7.36 months; HR 0.59; 95% CI 0.40 to 0.88; p = 0.01) for patients who received I/O compared with chemotherapy(CT) among seven TIME genes. In order to test our hypothesis fully, a pooled analysis of SPTA1mt (a core positive predictors of CD8+TILs) and KEAP1mt (a core negative predictors for CD8+TILs ) were conducted and yielded that co occurrence of SPTA1mt and KEAP1mt had a compound effects for TIME. The validation showed that co mutation with SPTA1mt was accompanied by an decrease HR for I/O vs. CT in both PFS (HR S+K vs. K only 0.59 vs 1.56) and OS (HR S+K vs. K only 0.39 vs 0.80) for KEAP1mt patients. Conclusions: Our data show that it is feasible to identify individuals or groups of individual with specific mutations to immunotherapy responses from TIME view. SPTA1mt was a core predictors for higher CD8+ TILs and can be identified as a predictive biomarker for benefit from I/O compared with CT. Prospective studies are warranted for further investigation.


Sign in / Sign up

Export Citation Format

Share Document