Continuous‐wave lasing at 100°C in 1.3 µm quantum dot microdisk diode laser

2015 ◽  
Vol 51 (17) ◽  
pp. 1354-1355 ◽  
Author(s):  
N.V. Kryzhanovskaya ◽  
E.I. Moiseev ◽  
Yu. V. Kudashova ◽  
F.I. Zubov ◽  
A.A. Lipovskii ◽  
...  
1999 ◽  
Vol 11 (11) ◽  
pp. 1345-1347 ◽  
Author(s):  
A.E. Zhukov ◽  
A.R. Kovsh ◽  
V.M. Ustinov ◽  
Yu.M. Shernyakov ◽  
S.S. Mikhrin ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 710
Author(s):  
Michał Michalik ◽  
Jacek Szymańczyk ◽  
Michał Stajnke ◽  
Tomasz Ochrymiuk ◽  
Adam Cenian

The paper deals with the medical application of diode-lasers. A short review of medical therapies is presented, taking into account the wavelength applied, continuous wave (cw) or pulsed regimes, and their therapeutic effects. Special attention was paid to the laryngological application of a pulsed diode laser with wavelength 810 nm, and dermatologic applications of a 975 nm laser working at cw and pulsed mode. The efficacy of the laser procedures and a comparison of the pulsed and cw regimes is presented and discussed.


2001 ◽  
Vol 89 (12) ◽  
pp. 8273-8278 ◽  
Author(s):  
Yuri Kaganovskii ◽  
Irena Antonov ◽  
Fredrick Bass ◽  
Michael Rosenbluh ◽  
Audrey Lipovskii

2006 ◽  
Vol 89 (4) ◽  
pp. 041113 ◽  
Author(s):  
T. Kettler ◽  
L. Ya. Karachinsky ◽  
N. N. Ledentsov ◽  
V. A. Shchukin ◽  
G. Fiol ◽  
...  

1989 ◽  
Vol 14 (12) ◽  
pp. 633 ◽  
Author(s):  
Hiroki Nakatsuka ◽  
Ryuzi Yano ◽  
Yoshinori Matsumoto ◽  
Kazuki Inouye

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2315
Author(s):  
Alexey E. Zhukov ◽  
Natalia V. Kryzhanovskaya ◽  
Eduard I. Moiseev ◽  
Anna S. Dragunova ◽  
Mingchu Tang ◽  
...  

An InAs/InGaAs quantum dot laser with a heterostructure epitaxially grown on a silicon substrate was used to fabricate injection microdisk lasers of different diameters (15–31 µm). A post-growth process includes photolithography and deep dry etching. No surface protection/passivation is applied. The microlasers are capable of operating heatsink-free in a continuous-wave regime at room and elevated temperatures. A record-low threshold current density of 0.36 kA/cm2 was achieved in 31 µm diameter microdisks operating uncooled. In microlasers with a diameter of 15 µm, the minimum threshold current density was found to be 0.68 kA/cm2. Thermal resistance of microdisk lasers monolithically grown on silicon agrees well with that of microdisks on GaAs substrates. The ageing test performed for microdisk lasers on silicon during 1000 h at a constant current revealed that the output power dropped by only ~9%. A preliminary estimate of the lifetime for quantum-dot (QD) microlasers on silicon (defined by a double drop of the power) is 83,000 h. Quantum dot microdisk lasers made of a heterostructure grown on GaAs were transferred onto a silicon wafer using indium bonding. Microlasers have a joint electrical contact over a residual n+ GaAs substrate, whereas their individual addressing is achieved by placing them down on a p-contact to separate contact pads. These microdisks hybridly integrated to silicon laser at room temperature in a continuous-wave mode. No effect of non-native substrate on device characteristics was found.


Sign in / Sign up

Export Citation Format

Share Document