scholarly journals SWEET-Cat updated

2018 ◽  
Vol 620 ◽  
pp. A58 ◽  
Author(s):  
S. G. Sousa ◽  
V. Adibekyan ◽  
E. Delgado-Mena ◽  
N. C. Santos ◽  
D. T. Andreasen ◽  
...  

Context. Exoplanets have now been proven to be very common. The number of its detections continues to grow following the development of better instruments and missions. One key step for the understanding of these worlds is their characterization, which mostly depend on their host stars. Aims. We perform a significant update of the Stars With ExoplanETs CATalog (SWEET-Cat), a unique compilation of precise stellar parameters for planet-host stars provided for the exoplanet community. Methods. We made use of high-resolution spectra for planet-host stars, either observed by our team or found in several public archives. The new spectroscopic parameters were derived for the spectra following the same homogeneous process (ARES+MOOG). The host star parameters were then merged together with the planet properties listed in exoplanet.eu to perform simple data analysis. Results. We present new spectroscopic homogeneous parameters for 106 planet-host stars. Sixty-three planet hosts are also reviewed with new parameters. We also show that there is a good agreement between stellar parameters derived for the same star but using spectra obtained from different spectrographs. The planet-metallicity correlation is reviewed showing that the metallicity distribution of stars hosting low-mass planets (below 30 M⊕) is indistinguishable from that from the solar neighborhood sample in terms of metallicity distribution.

2020 ◽  
Vol 497 (2) ◽  
pp. 2469-2485 ◽  
Author(s):  
Serafina Di Gioia ◽  
Stefano Cristiani ◽  
Gabriella De Lucia ◽  
Lizhi Xie

ABSTRACT Using the GAEA semi-analytic model, we analyse the connection between Damped Ly α systems (DLAs) and H i in galaxies. Our state-of-the-art semi-analytic model is tuned to reproduce the local galaxy H i mass function, and that also reproduces other important galaxy properties, including the galaxy mass–gas metallicity relation. To produce catalogues of simulated DLAs we throw 105 random lines of sight in a composite simulated volume: dark matter haloes with log$(\frac{M_{200}}{ {\rm M}_{\odot }}) \ge 11.5$ are extracted from the Millennium Simulation, while for $9.2 \le \log (\frac{M_{200}}{ \mathrm{M}_{\odot }})\lt 11.5$ we use the Millennium II, and for $8 \le \log (\frac{M_{200}}{\mathrm{M}_{\odot }}) \lt 9.2$ a halo occupation distribution model. At 2 < z < 3, where observational data are more accurate, our fiducial model predicts the correct shape of the column density distribution function, but its normalization falls short of the observations, with the discrepancy increasing at higher redshift. The agreement with observations is significantly improved increasing both the H i masses and the disc radii of model galaxies by a factor of 2, as implemented ‘a posteriori’ in our 2M−2R model. In the redshift range of interest, haloes with $M_{200} \ge {10}^{11} \, \mathrm{M}_{\odot }$ give the major contribution to ΩDLA, and the typical DLA host halo mass is $\sim \!{10}^{11} \, \mathrm{M}_{\odot }$. The simulated DLA metallicity distribution is in relatively good agreement with observations, but our model predicts an excess of DLAs at low metallicities. Our results suggest possible improvements for the adopted modelling of the filtering mass and metal ejection in low-mass haloes.


2005 ◽  
Vol 277-279 ◽  
pp. 851-856
Author(s):  
Hyun Jin Jeong ◽  
Jae Woo Lee ◽  
Sug Whan Kim ◽  
A Ram Kang

We present high-resolution chemical abundance results of 15 metal-poor dwarf stars in the solar neighborhood. Our metallicity measurements are in a good agreement with previous estimates. The stars under investigation have metallicities ranging from -1.6 to -2.8 with the mean value of [Fe/H] = -2.28. The mean values of elemental abundances are [O/Fe] = 0.73, [Na/Fe] = -0.16, [Ca/Fe] = 0.28, and [Ti/Fe] = 0.60. Our results are found to be consistent with those of giant metal-poor stars.


2020 ◽  
Vol 495 (2) ◽  
pp. 2063-2074 ◽  
Author(s):  
David A Velasco Romero ◽  
Frédéric S Masset

ABSTRACT Recent work has suggested that the net gravitational force acting on a massive and luminous perturber travelling through a gaseous and opaque medium can have same direction as the perturber’s motion (an effect sometimes called negative dynamical friction). Analytic results were obtained using a linear analysis and were later confirmed by means of non-linear numerical simulations which did not resolve the flow within the Bondi sphere of the perturber, hence effectively restricted to weakly perturbed regions of the flow. Here we present high-resolution simulations, using either 3D Cartesian or 2D cylindrical meshes that resolve the flow within the Bondi sphere. We perform a systematic study of the force as a function of the perturber’s mass and luminosity, in the subsonic regime. We find that perturbers with mass M smaller than a few Mc ∼ χcs/G are subjected to a thermal force with a magnitude in good agreement with linear theory (χ being the thermal diffusivity of the medium, cs the adiabatic sound speed, and G the gravitational constant), while for larger masses, the thermal forces are only a fraction of the linear estimate that decays as M−1. Our analysis confirms the possibility of negative friction (hence a propulsion) on sufficiently luminous, low-mass embryos embedded in protoplanetary discs. Finally, we give an approximate expression of the total force at low Mach number, valid both for subcritical (M < Mc) and supercritical (M > Mc) perturbers.


2019 ◽  
Vol 85 (7) ◽  
pp. 73-82
Author(s):  
Vladimir O. Tolcheev

The issues of organizing an expert survey and carrying out statistical processing and analysis of the results are considered. The experts are the fifth-year students undergoing training at the Department of Management and Informatics «Moscow Power Engineering Institute» of the National Research University. The goal of the survey is revealing the disciplines that are most useful for employment in their specialty. We discuss the special features of the survey and a concept of «work in the specialty», with due regard for statistical reliability of the results. Data of written questionnaire gained in 2018 were processed and analyzed using cluster analysis (construction of dendrograms and application of the K-means method) and non-parametric statistical criteria (Friedman and Mann – Whitney – Wilcoxon). Data processing is implemented in the program STATISTICA. The analysis is carried out to reveal significant differences between the educational courses and assess the degree of consistency of the respondents to divide them into clusters that unite the students with similar judgments. Data analysis revealed that experts’ estimates in 2018 are in fairly good agreement with the estimates of previous studies; among the respondents there are three coalitions corresponding to the training modules «Software», «Management Theory», «Data Analysis»; the overall consistency of students in the two groups is very low (and, on the contrary, high in the identified clusters); grades are homogeneous and do not depend on training groups (and employment – unemployment of the respondents). The obtained results allow us to address a number of important questions regarding the ways of improving the educational process, e.g., to optimize yearly course hours for different educational modules.


1994 ◽  
Vol 376 ◽  
Author(s):  
M. Vrána ◽  
P. Klimanek ◽  
T. Kschidock ◽  
P. Lukáš ◽  
P. Mikula

ABSTRACTInvestigation of strongly distorted crystal structures caused by dislocations, stacking-faults etc. in both plastically deformed f.c.c. and b.c.c. metallic materials was performed by the analysis of the neutron diffraction line broadening. Measurements were realized by means of the high resolution triple-axis neutron diffractometer equipped by bent Si perfect crystals as monochromator and analyzer at the NPI Řež. The substructure parameters obtained in this manner are in good agreement with the results of X-ray diffraction analysis.


2012 ◽  
Vol 10 (H16) ◽  
pp. 355-355
Author(s):  
P. Di Matteo ◽  
M. Haywood ◽  
F. Combes ◽  
B. Semelin ◽  
C. Babusiaux ◽  
...  

AbstractIn this talk, I will present the result of high resolution numerical simulations of disk galaxies with various bulge/disk ratios evolving isolated, showing that: •Most of migration takes place when the bar strength is high and decreases in the phases of low activity (in agreement with the results by Brunetti et el. 2011, Minchev et al. 2011).•Most of the stars inside the corotation radius (CR) do not migrate in the outer regions, but stay confined in the inner disk, while stars outside CR can migrate either inwards or outwards, diffusing over the whole disk.•Migration is accompanied by significative azimuthal variations in the metallicity distribution, of the order of 0.1 dex for an initial gradient of ~-0.07 dex/kpc.•Boxy bulges are an example of stellar structures whose properties (stellar content, vertical metallicity, [α/Fe] and age gradients, ..) are affected by radial migration (see also Fig. 1).


2015 ◽  
Vol 12 (S316) ◽  
pp. 328-333
Author(s):  
W. Chantereau ◽  
C. Charbonnel ◽  
G. Meynet

AbstractOur knowledge of the formation and early evolution of globular clusters (GCs) has been totally shaken with the discovery of the peculiar chemical properties of their long-lived host stars. Therefore, the interpretation of the observed Colour Magnitude Diagrams (CMD) and of the properties of the GC stellar populations requires the use of new stellar models computed with relevant chemical compositions. In this paper we use the grid of evolution models for low-mass stars computed by Chantereau et al. (2015) with the initial compositions of second-generation stars as predicted by the fast rotating massive stars scenario to build synthesis models of GCs. We discuss the implications of the assumed initial chemical distribution on 13 Gyr isochrones. We build population synthesis models to predict the fraction of stars born with various helium abundances in present day globular clusters (assuming an age of 13 Gyr). With the current assumptions, 61 % of stars on the main sequence are predicted to be born with a helium abundance in mass fraction, Yini, smaller than 0.3 and only 11 % have a Yini larger than 0.4. Along the horizontal branch, the fraction of stars with Yini inferior to 0.3 is similar to that obtained along the main sequence band (63 %), while the fraction of very He-enriched stars is significantly decreased (only 3 % with Yini larger than 0.38).


Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 289 ◽  
Author(s):  
Serena Benatti

Exoplanet research has shown an incessant growth since the first claim of a hot giant planet around a solar-like star in the mid-1990s. Today, the new facilities are working to spot the first habitable rocky planets around low-mass stars as a forerunner for the detection of the long-awaited Sun-Earth analog system. All the achievements in this field would not have been possible without the constant development of the technology and of new methods to detect more and more challenging planets. After the consolidation of a top-level instrumentation for high-resolution spectroscopy in the visible wavelength range, a huge effort is now dedicated to reaching the same precision and accuracy in the near-infrared. Actually, observations in this range present several advantages in the search for exoplanets around M dwarfs, known to be the most favorable targets to detect possible habitable planets. They are also characterized by intense stellar activity, which hampers planet detection, but its impact on the radial velocity modulation is mitigated in the infrared. Simultaneous observations in the visible and near-infrared ranges appear to be an even more powerful technique since they provide combined and complementary information, also useful for many other exoplanetary science cases.


2022 ◽  
Vol 163 (2) ◽  
pp. 44
Author(s):  
Bradley M. S. Hansen

Abstract We present a catalog of unbound stellar pairs, within 100 pc of the Sun, that are undergoing close, hyperbolic, encounters. The data are drawn from the GAIA EDR3 catalog, and the limiting factors are errors in the radial distance and unknown velocities along the line of sight. Such stellar pairs have been suggested to be possible events associated with the migration of technological civilizations between stars. As such, this sample may represent a finite set of targets for a SETI search based on this hypothesis. Our catalog contains a total of 132 close passage events, featuring stars from across the entire main sequence, with 16 pairs featuring at least one main-sequence star of spectral type between K1 and F3. Many of these stars are also in binaries, so that we isolate eight single stars as the most likely candidates to search for an ongoing migration event—HD 87978, HD 92577, HD 50669, HD 44006, HD 80790, LSPM J2126+5338, LSPM J0646+1829 and HD 192486. Among host stars of known planets, the stars GJ 433 and HR 858 are the best candidates.


Sign in / Sign up

Export Citation Format

Share Document