scholarly journals Improvement of the working bodies of the harvesting machines by means of the use of composite materials

2020 ◽  
Vol 17 ◽  
pp. 00191
Author(s):  
Nikita Zhbanov ◽  
Nikolay Byshow ◽  
Natalia Kostenko ◽  
George Rembalovich ◽  
Mihail Kostenko

Potato production is associated with high energy and labor costs, and the final part (harvesting) accounts for the bulk of the costs. When designing potato harvesting technology, the main focus is on the separation of soil impurities, which make up about 97 % with a high yield of 300 kg/ha, and lower yields increase them to 98–99 %. Nowadays, with the advent of new materials and new technologies in agricultural engineering, there is modernization of existing structures using innovative materials, as a result of which some new and having no analogues models are created that can improve the quality of the machine, increase its service life, and reduce energy costs. The effectiveness of the working bodies of potato harvesters determines the ratio of the separating ability of the working body to its energy consumption. As a result of the studies, power parameters and the separating ability of the main working bodies were generalized. The modernization of the separating elevator consists in replacing the metal rods of an existing elevator apron with a similar apron with rods of some composite material. This modernization can significantly reduce the mass of the working body and the whole combine as a whole and reduce energy consumption.

2015 ◽  
Vol 4 (1) ◽  
pp. 4
Author(s):  
Yang Zhang ◽  
Yazhi Hu

<p>Construction industry has been one of China's energy guzzlers, if we can reduce the energy consumption of the building industry through the use of new materials or new technologies, which will have a significant impact on the development of economy and society. The status quo of China's construction industry, high energy consumption, paper use energy-saving technologies in the field of construction works to expand the analysis, discusses the necessity of the construction industry currently uses energy-saving insulation materials and analyzes the current energy field of construction engineering technology application status, on the basis of focus on the application of energy-saving insulation materials in construction, particularly in the new system and the new glass curtain wall insulation material in construction applications, which further enhance the energy-saving technology within the field of construction engineering the application level has a certain reference.</p>


Author(s):  
S. V. Yegorova ◽  
A. A. Slavyanskiy ◽  
T. A. Postnikova ◽  
L. V. Ustinova ◽  
R. S. Rostegaev

People whose professional activity is associated with high energy consumption have a completely different lifestyle, unusual for the average person engaged in mental activity. They are directly related to one thing in common - high levels of physical activity. This leads to a large expenditure of the body's own energy and the breakdown of muscle tissue. To maintain the optimal state of a person during a period of intense activity, it is necessary to replenish energy costs in order to avoid the development of an extreme state, which is characterized by a severe state of the body, which develops under the influence of extreme emergency factors of the external and internal environments and is characterized by significant disorders of the body's vital functions. The article discusses issues related to rations for people with increased physical activity in extreme situations. Despite the fact that on the food market for people with increased physical activity there is a wide range of various snacks that are part of pocket and dry rations, one of the important tasks is to develop a modern food product that provides an increase in nutritional value. The existing rations are of insufficient nutritional value. The solution to this problem is possible through new technologies. The most promising are finely ground mixtures of various vegetables and fruits in combination with grain products. The creation of a new product in the form of a mixture for biscuits will expand the range of functional products and increase the profit of enterprises, since sales of such products in 2019 amounted to 274 billion rubles, which is 16 billion rubles more than in 2018. Biscuits from a multicomponent mixture with a high-grade protein in the composition will allow you to quickly restore the energy consumption of highly active people.


2019 ◽  
Vol 1156 ◽  
pp. 79-96
Author(s):  
Rodrigo Spinelli ◽  
Pedro Henrique Dall'Agnol Pasquali ◽  
Angélica Bertotti ◽  
Dantara Lerin ◽  
Alana F. Pitol ◽  
...  

The high energy consumption of buildings in the various sectors of society, the exploitation of natural resources and the use of fossil fuels make it necessary to research constructive alternatives that can reduce the impact on the planet. The use of thermal insulation in buildings is important for the reduction of energy consumption, however, most of the materials developed are manufactured generating high rates of pollution. This study starts with the use of natural elements (corn cob / soybean straw / pine bark) and innovative elements (vacuum / slimstone plate), in order to improve energy efficiency of buildings. The methodological development of the work began in the selection of materials and development of facade cladding boards. The determination of the thermal conductivity was analyzed using a heating plate and PT100 temperature sensors, determination of the apparent and actual density, and analysis of the material composition using Scanning Electron Microscopy (SEM). After the development of the analyzes, the natural slabs and recycled slimstone showed significant results, with thermal conductivity lower than 0.07 W / m.k.


2015 ◽  
Vol 4 (1) ◽  
pp. 4
Author(s):  
Yang Zhang ◽  
Yazhi Hu

<p>Construction industry has been one of China's energy guzzlers, if we can reduce the energy consumption of the building industry through the use of new materials or new technologies, which will have a significant impact on the development of economy and society. The status quo of China's construction industry, high energy consumption, paper use energy-saving technologies in the field of construction works to expand the analysis, discusses the necessity of the construction industry currently uses energy-saving insulation materials and analyzes the current energy field of construction engineering technology application status, on the basis of focus on the application of energy-saving insulation materials in construction, particularly in the new system and the new glass curtain wall insulation material in construction applications, which further enhance the energy-saving technology within the field of construction engineering the application level has a certain reference.</p>


2019 ◽  
Vol 54 (4) ◽  
pp. 123-129
Author(s):  
A.A. Mikhaylin ◽  
◽  
V.P. Maksimov ◽  

The modeling of the events of moisture transfer in the soil uses the concept of porosity, which directly depends on the density and physical and mechanical properties of the soil. The creation of the necessary conditions for water permeability is possible by the relevant working bodies due to the mechanical crumbling of the over-compacted horizons into soil lumps of the appropriate size. An integral indicator of the economic functions of the soil is the biological productivity – yield, which is determined mainly by the use of different types of reclamation. In this case, there is a reclamation of reclaimed slope land, which after loosening receives a new evolution and the possibility of implementing new technological processes providing a global goal of increasing yields. The estimates of the effectiveness of different methods of soil treatment are given. The content of soil-reclamation agricultural engineering on the basis of soil loosening is considered. The data of experimental studies of innovative deep-loosener ГНЧ-0,6M, including comparative indicators of yield of spring barley on slope lands after tillage by the proposed device and prototype are shown. As a result of the studies of the aftereffect of deep loosening to a depth of 60 cm, it was found that in order to maintain a high yield of crops, in climatic and soil conditions of the venue, reclamation measures for deep loosening to a depth of 0,6 m should be carried out once every two years.


2020 ◽  
Vol 26 (3) ◽  
pp. 20-25
Author(s):  
Laurențiu Bogdan Asalomia ◽  
Gheorghe Samoilescu

AbstractThe paper analyses the role of control and monitoring of electro-energetic equipment in order to reduce operational costs, increase profits and reduce carbon emissions. The role of SCADA and EcoStruxure Power systems is presented and analysed taking into account the energy consumption and its savings. The paper presents practical and modern solutions to reduce energy consumption by up to 53%, mass by up to 47% and increase the life of the equipment by adjusting the electrical parameters. The Integrated Navigation System has allowed an automatic control and an efficient management. For ships, the implementation of an energy efficiency design index and new technologies was required for the GREEN SHIP project.


2017 ◽  
Vol 23 (2) ◽  
pp. 218-230 ◽  
Author(s):  
Xiaoying Zhu ◽  
Renbi Bai

Background: Bioactive compounds from various natural sources have been attracting more and more attention, owing to their broad diversity of functionalities and availabilities. However, many of the bioactive compounds often exist at an extremely low concentration in a mixture so that massive harvesting is needed to obtain sufficient amounts for their practical usage. Thus, effective fractionation or separation technologies are essential for the screening and production of the bioactive compound products. The applicatons of conventional processes such as extraction, distillation and lyophilisation, etc. may be tedious, have high energy consumption or cause denature or degradation of the bioactive compounds. Membrane separation processes operate at ambient temperature, without the need for heating and therefore with less energy consumption. The “cold” separation technology also prevents the possible degradation of the bioactive compounds. The separation process is mainly physical and both fractions (permeate and retentate) of the membrane processes may be recovered. Thus, using membrane separation technology is a promising approach to concentrate and separate bioactive compounds. Methods: A comprehensive survey of membrane operations used for the separation of bioactive compounds is conducted. The available and established membrane separation processes are introduced and reviewed. Results: The most frequently used membrane processes are the pressure driven ones, including microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF). They are applied either individually as a single sieve or in combination as an integrated membrane array to meet the different requirements in the separation of bioactive compounds. Other new membrane processes with multiple functions have also been developed and employed for the separation or fractionation of bioactive compounds. The hybrid electrodialysis (ED)-UF membrane process, for example has been used to provide a solution for the separation of biomolecules with similar molecular weights but different surface electrical properties. In contrast, the affinity membrane technology is shown to have the advantages of increasing the separation efficiency at low operational pressures through selectively adsorbing bioactive compounds during the filtration process. Conclusion: Individual membranes or membrane arrays are effectively used to separate bioactive compounds or achieve multiple fractionation of them with different molecule weights or sizes. Pressure driven membrane processes are highly efficient and widely used. Membrane fouling, especially irreversible organic and biological fouling, is the inevitable problem. Multifunctional membranes and affinity membranes provide the possibility of effectively separating bioactive compounds that are similar in sizes but different in other physical and chemical properties. Surface modification methods are of great potential to increase membrane separation efficiency as well as reduce the problem of membrane fouling. Developing membranes and optimizing the operational parameters specifically for the applications of separation of various bioactive compounds should be taken as an important part of ongoing or future membrane research in this field.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 575
Author(s):  
Shangyi Lou ◽  
Jin He ◽  
Hongwen Li ◽  
Qingjie Wang ◽  
Caiyun Lu ◽  
...  

Subsoiling has been acknowledged worldwide to break compacted hardpan, improve soil permeability and water storage capacity, and promote topsoil deepening and root growth. However, there exist certain factors which limit the wide in-field application of subsoiling machines. Of these factors, the main two are poor subsoiling quality and high energy consumption, especially the undesired tillage depth obtained in the field with cover crops. Based on the analysis of global adoption and benefits of subsoiling technology, and application status of subsoiling machines, this article reviewed the research methods, technical characteristics, and developing trends in five key aspects, including subsoiling shovel design, anti-drag technologies, technologies of tillage depth detection and control, and research on soil mechanical interaction. Combined with the research progress and application requirements of subsoiling machines across the globe, current problems and technical difficulties were analyzed and summarized. Aiming to solve these problems, improve subsoiling quality, and reduce energy consumption, this article proposed future directions for the development of subsoiling machines, including optimizing the soil model in computer simulation, strengthening research on the subsoiling mechanism and comprehensive effect, developing new tillage depth monitoring and control systems, and improving wear-resisting properties of subsoiling shovels.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 357
Author(s):  
Pedro Moura ◽  
José Ignacio Moreno ◽  
Gregorio López López ◽  
Manuel Alvarez-Campana

University campuses are normally constituted of large buildings responsible for high energy demand, and are also important as demonstration sites for new technologies and systems. This paper presents the results of achieving energy sustainability in a testbed composed of a set of four buildings that constitute the Telecommunications Engineering School of the Universidad Politécnica de Madrid. In the paper, after characterizing the consumption of university buildings for a complete year, different options to achieve more sustainable use of energy are presented, considering the integration of renewable generation sources, namely photovoltaic generation, and monitoring and controlling electricity demand. To ensure the implementation of the desired monitoring and control, an internet of things (IoT) platform based on wireless sensor network (WSN) infrastructure was designed and installed. Such a platform supports a smart system to control the heating, ventilation, and air conditioning (HVAC) and lighting systems in buildings. Furthermore, the paper presents the developed IoT-based platform, as well as the implemented services. As a result, the paper illustrates how providing old existing buildings with the appropriate technology can contribute to the objective of transforming such buildings into nearly zero-energy buildings (nZEB) at a low cost.


Sign in / Sign up

Export Citation Format

Share Document