scholarly journals Investigation of the travel depth of the disc colter and the conditions for its balance

2021 ◽  
Vol 262 ◽  
pp. 01022
Author(s):  
Vladislav Mishkhozhev ◽  
Aliy Gabaev ◽  
Anatoly Nam ◽  
Vyacheslav Dzuganov ◽  
Taymira Pazova

The seeding machine operation procedure consists of preparing the place where the seed should be placed, in placing the grain at a certain level below the soil surface in a certain order of arrangement and, finally, in the embedding – this work in large part falls on the share of the colter. The presented operation procedure of the seeder unit provides two main phases: reproduction of the maximum possible uniform feed of seed and its transporting to the colter; preparation of the groove, the required agrotechnical dimensions and distribution of seed material within it, followed by embedding them with soil. At the first phase of the seeding procedure, the issues of the outflow of seed material and its travel through the “seed tube - colter” system are relevant, and for the second phase, it is necessary to investigate the deformations of the soil layer reproduced by the colters, which is extremely necessary to select conditions that ensure uniform distribution of seed along the length and width of the row and at the desired depth. The article analyzes the investigation results by various authors devoted to the study of the stability of the depth of the opener stroke, its balance, and on their basis, analytical dependences are obtained.

2020 ◽  
Vol 46 (3) ◽  
pp. 113-122
Author(s):  
Myroslav Dutchyn ◽  
Tetyana Grytsyuk ◽  
Iryna Bida ◽  
Liubov Dorosh ◽  
Rostyslav Pylypyuk ◽  
...  

The influence of static loadings of the foundations of structures in the process of soil compaction of the base on the subsidence of the soil surface and the bench outside the loaded contour is considered in the work. The studies were performed on models of rectangular massive foundations using the method of equivalent soil layer, based on the theory of compaction of linear-deforming half-space. Using this method, the values of the average sedimentation of the models of rectangular foundations were calculated, taking into account all components of normal stresses and lateral soil extension. On the basis of the method of angular points of the equivalent layer, the values of subsidence of the soil surface outside the contour of the foundation models are calculated, depending on the distance from the contour of the foundation, the value of the average subsidence of the foundation and its parameters. To determine the areas of the soil surface most sensitive to the perception of static loads, lines of equal settlements of the soil surface outside the contour of the foundation models are constructed. On the basis of theoretical studies, probable magnitudes of sedimentation of soil benchmarks are calculated, depending on the subsidence of the soil surface and the distance from the contour of the foundation. The probable minimum distance from the contour of the structure to the places of laying of initial soil benchmarks is established to ensure the required accuracy of geodetic observations. The results of the conducted researches may find application in the design of geodetic observations of the settlements and deformations of the foundations of engineering structures and the choice of the locations of local level points.


Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Kai Yang ◽  
Zejun Tang ◽  
Jianzhang Feng

Sandy soils are prone to nutrient losses, and consequently do not have as much as agricultural productivity as other soils. In this study, coal fly ash (CFA) and anionic polyacrylamide (PAM) granules were used as a sandy soil amendment. The two additives were incorporated to the sandy soil layer (depth of 0.2 m, slope gradient of 10°) at three CFA dosages and two PAM dosages. Urea was applied uniformly onto the low-nitrogen (N) soil surface prior to the simulated rainfall experiment (rainfall intensity of 1.5 mm/min). The results showed that compared with no addition of CFA and PAM, the addition of CFA and/or PAM caused some increases in the cumulative NO3−-N and NH4+-N losses with surface runoff; when the rainfall event ended, 15% CFA alone treatment and 0.01–0.02% PAM alone treatment resulted in small but significant increases in the cumulative runoff-associated NO3−-N concentration (p < 0.05), meanwhile 10% CFA + 0.01% PAM treatment and 15% CFA alone treatment resulted in nonsignificant small increases in the cumulative runoff-associated NH4+-N concentration (p > 0.05). After the rainfall event, both CFA and PAM alone treatments increased the concentrations of NO3−-N and NH4+-N retained in the sandy soil layer compared with the unamended soil. As the CFA and PAM co-application rates increased, the additive effect of CFA and PAM on improving the nutrient retention of sandy soil increased.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2015
Author(s):  
Iwona Jaskulska ◽  
Kestutis Romaneckas ◽  
Dariusz Jaskulski ◽  
Piotr Wojewódzki

Conservation agriculture has three main pillars, i.e., minimum tillage, permanent soil cover, and crop rotation. Covering the soil surface with plant residues and minimum mechanical soil disturbance can all result from introducing a strip-till one-pass (ST-OP) system. The aim of this study was to determine the impact of the ST-OP technology on the management of plant residues, soil properties, inputs, and emissions related to crop cultivation. We compared the effect of a ST-OP system against conventional tillage (CT) using a plough, and against reduced, non-ploughing tillage (RT). Four field experiments were conducted for evaluating the covering of soil with plant residues of the previous crop, soil loss on a slope exposed to surface soil runoff, soil structure and aggregate stability, occurrence of soil organisms and glomalin content, soil moisture and soil water reserve during plant sowing, labour and fuel inputs, and CO2 emissions. After sowing plants using ST-OP, 62.7–82.0% of plant residues remained on the soil surface, depending on the previous crop and row spacing. As compared with CT, the ST-OP system increased the stability of soil aggregates of 0.25–2.0 mm diameter by 12.7%, glomalin content by 0.08 g·kg−1, weight of earthworms five-fold, bacteria and fungi counts, and moisture content in the soil; meanwhile, it decreased soil loss by 2.57–6.36 t·ha−1 year−1, labour input by 114–152 min·ha−1, fuel consumption by 35.9–45.8 l·ha−1, and CO2 emissions by 98.7–125.9 kg·ha−1. Significant favourable changes, as compared with reduced tillage (RT), were also found with respect to the stability index of aggregates of 2.0–10.0 mm diameter, the number and weight of earthworms, as well as bacteria and fungi counts.


Author(s):  
Виктор Михайлович Белолипецкий ◽  
Светлана Николаевна Генова

Практический интерес в районах вечной мерзлоты представляет глубина сезонного оттаивания. Построена одномерная (в вертикальном направлении) упрощенная полуэмпирическая модель динамики вечной мерзлоты в “приближении медленных движений границ фазового перехода”, основанная на задаче Стефана и эмпирических соотношениях. Калибровочные параметры модели выбираются для исследуемого района с использованием натурных измерений глубины оттаивания и температуры воздуха. Проверка работоспособности численной модели проведена для района оз. Тулик (Аляска). Получено согласие рассчитанных значений глубины талого слоя и температуры поверхности почвы с результатами измерений Due to the change in global air temperature, the assessment of permafrost reactions to climate change is of interest. As the climate warms, both the thickness of the thawed soil layer and the period for existence of the talik are increased. The present paper proposes a small-size numerical model of vertical temperature distributions in the thawed and frozen layers when a frozen layer on the soil surface is absent. In the vertical direction, thawed and frozen soils are separated. The theoretical description of the temperature field in soils when they freeze or melt is carried out using the solution of the Stefan problem. The mathematical model is based on thermal conductivity equations for the frozen and melted zones. At the interfacial boundary, the Dirichlet condition for temperature and the Stefan condition are set. The numerical methods for solving of Stefan problems are divided into two classes, namely, methods with explicit division of fronts and methods of end-to-end counting. In the present work, the method with the selection of fronts is implemented. In the one-dimensional Stefan problem, when transformed to new variables, the computational domain in the spatial variable is mapped onto the interval [0 , 1]. In the presented equations, the convective terms characterize the rate of temperature transfer (model 1). A simplified version of the Stefan problem solution is considered without taking into account this rate (“approximation of slow movements of the boundaries of the phase transition”, model 2). The model is tuned to a specific object of research. Model parameter values can vary significantly in different geographic regions. This paper simulates the dynamics of permafrost in the area of Lake Tulik (Alaska) in summer. Test calculations based on the proposed simplified model show its adequacy and consistency with field measurements. The developed model can be used for qualitative studies of the long-term dynamics of permafrost using data of the air temperature, relative air humidity and precipitation


2011 ◽  
Vol 189-193 ◽  
pp. 2366-2370
Author(s):  
Jun Hong Li

For the loess cave characteristics, such as the thin coverage soil layer at the hole top, the poor self-stabilizing capacity, the large disturbance deformation after excavation and the easy collapse, thus in this paper, the loess cave safety factor is obtained by the method of strength reduction. And the stability calculation analysis is much more perfect. The Northwest Area Lishi loess cave is used in this paper, and the idea of strength reduction finite element method is applied, based on the Drucker-Prager yield criterion, the loess cave static stability analysis is made by the software of ANSYS.The results show that the actual situation can be reflected by the method of finite element strength subtraction. And the obtained loess cave stability coefficient is much closer to the actual steady state, thus showing the certain advantages of stability analysis.The method is also adopted in this paper. And its feasibility can be applied to the engineering practice, also a theoretical basis of reference is provided for engineering application.


2021 ◽  
Vol 930 (1) ◽  
pp. 012025
Author(s):  
P D Pietro ◽  
M Lelli ◽  
A Rahman ◽  
Serkandi

Abstract The efficacy of erosion control systems depends on preventing soil loss underneath and maintaining its integrity under the effects of the water flow. The paper presents the research results at the Colorado State University on the performance of double twisted wire mesh products, known as Reno Mattresses, used as soil erosion control systems. Mattresses were subjected to various flow conditions on a 10 m long flume placed on a soil layer. The performance against erosion was evaluated by assessing the effect of the stone motion inside the mattress combined with the condition of incipient soil erosion underneath, in relationship to the mattress thickness, the filling stone properties, and under variable hydraulic flow regimes. At the same time, confirming the stability obtained using the conventional tractive force design approach, the research results allowed to introduce a new performance limit based on incipient soil erosion underneath the revetment. Based on the research results, the authors propose to express the shear resistance of mattresses used as soil erosion control systems as a function of the filling stones’ size, uniformity, unit weight, mattress thickness, and the presence of vertical strengthening elements.


1969 ◽  
Vol 41 (1) ◽  
pp. 25-34
Author(s):  
Juan A. Bonnet ◽  
Eduardo J. Brenes

1. The area of soils surveyed in Lajas Valley was 24,656 acres. 2. The soils were classified into normal, saline, saline-alkali, and non- saline-alkali at depths of 0 to 8, 8 to 24, 24 to 48, and 48 to 72 inches, respectively. 3. A large percentage of normal soils was found in the upper soil layer and of saline-alkali soils in the lower layers. 4. Normal soils occupied about 86 percent of the surface area to a depth of 8 inches and about 63 percent at a depth of 8 to 24 inches. 5. Soils with a salinity problem increased from 9 percent at a depth of 8 inches to 28.3, 58.8 and 68.5 percent, respectively, at depths of 8 to 24, 24 to 48, and 48 to 72 inches. 6. The soils with a salinity problem were largely of the saline-alkali class. 7. In four soil-profile samples taken from Lajas Valley, the saturation percentage varied from 58 to 191, the electrical conductivity from 0.8 to 28.4 millimhos per centimeter, the exchangeable-sodium percentage from 2.2 to 46.0, the soil pH from 8.1 to 8.9, the content of gypsum from 0 to 21.9 tons per acre-foot, the gypsum requirement from 0 to 23.8 tons per acre-foot, and the hydraulic conductivity from less than 0.005 to 6.24 inches of water per hour. Higher gypsum contents were found in the deep subsoil layers of two soils (profiles 1 and 4). Amounts of gypsum varying from 9.9 to 20.3 tons per acre-foot of depth, are required for the reclamation of the surface layers of these two profiles. In general, the hydraulic- conductivity values show that the soil-surface layers are more permeable than the subsoil layers. 8. The procedure and methods used in this paper were found to be accurate, simple, rapid, and practical. They are recommended for the coordination of data related to the classification and reclamation of soils affected by salinity problems in the different countries of the world.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yuxiao Wang ◽  
Gang Shi ◽  
Xiaowei Tian ◽  
Chaoyue Li ◽  
Huanyu Cheng

Underground pipeline seepage and traffic load are the important factors causing city road collapse. In this paper, eight groups of indoor scale model experiments are used to study the road collapse caused by pipeline seepage, taking into account the load type, pipeline buried depth, the distance between pipeline and loss channel, the relative position of pipeline and loss channel, and the formation time of loss channel. The results show that when the erosion channel was formed later, the underlying erosion cavity was ellipsoid, while the other erosion cavities were funnel shaped. When only the static load is applied, the time to reach the ultimate failure is longer than that when only dynamic load is applied. The smaller dynamic load can increase the stability of the soil above the seepage pipeline, while the larger dynamic load can accelerate the collapse process. With the formation time of the erosion channel increasing, the erosion void size is larger and the surface is easier to collapse. With the increase of the distance between the loss passage and the pipeline, the damage time of the road surface is also increased. The larger the thickness of the soil layer above the pipeline, the smaller the size of the underground cavity and the surface subsidence.


Sign in / Sign up

Export Citation Format

Share Document