scholarly journals Low Cd content emitted by humans into the atmosphere

2021 ◽  
Vol 276 ◽  
pp. 01002
Author(s):  
Dongfang Yang ◽  
Linzhen Wei ◽  
Shubo Fang ◽  
Min Lu ◽  
Danfeng Yang

According to the data in May, September and October 1993, the variation range of Cd content in the water body of Jiaozhou Bay was 0.07-0.23μg/L, which conforms to the national water quality standard of Class I. It indicated that in May, September and October, the water in the entire water area of Jiaozhou Bay was not contaminated by Cd content. In May, the variation range of Cd content in the waters of Jiaozhou Bay was 0.09-0.18μg/L. In the coastal waters of the north of Jiaozhou Bay, the Cd content reached a relatively high value, which was 0.18μg/L. In September, the variation range of Cd content in the waters of Jiaozhou Bay was 0.07-0.23μg/L. In the coastal waters of the east of Jiaozhou Bay, the Cd content reached the highest value, 0.23μg/L. In October, the variation range of Cd content in the waters of Jiaozhou Bay was 0.08-0.18μg/L. In the coastal waters of the east of Jiaozhou Bay, the Cd content reached a relative high value, 0.18μg/L. In terms of Cd content, the water quality of Jiaozhou Bay had reached high quality. The water was clean, and it was not polluted by Cd content at all. The Cd content in the waters of Jiaozhou Bay mainly came from two sources, the transport of surface runoff and the transport of atmospheric deposition. The Cd content from surface runoff transportation was 0.18μg/L, and the Cd content from atmospheric deposition transportation was 0.18-0.23μg/L. The Cd content transported by atmospheric deposition was very close to the Cd content transported by surface runoff, and was very low, ranging from 0.18 to 0.23μg/L, far less than 1.00 μg/L. This revealed that the humans had realized the importance of environmental protection, and the emissions to the environment were very low. The atmosphere, land and sea were not polluted by Cd content. The Cd content transported by atmospheric deposition 0.18-0.23μg/L ≥ the Cd content transported by surface runoff 0.18μg/L, which indicated that the Cd content was mainly discharged into the atmosphere by humans and then deposited on the land.

2021 ◽  
Vol 276 ◽  
pp. 01010
Author(s):  
Dongfang Yang ◽  
Linzhen Wei ◽  
Ming Feng ◽  
Shengjun Zhang ◽  
Danfeng Yang

Based on the survey materials of the waters of Jiaozhou Bay in April and August 1981, this article studies the water temperature and horizontal distribution in the surface waters of Jiaozhou Bay. The results have showed that the water temperature ranged within 7.52–30.90°C in April and August, and the length of interval of water temperature was 23.38°C. The water temperature of the ocean was above 7.00°C. It indicated that the water temperature of the entire water body of Jiaozhou Bay was relatively high in April and August, in terms of the changes of water temperature. In April, the water temperature in the water body of Jiaozhou Bay ranged within 7.52–13.70°C, and the length of temperature interval was 6.18°C. In Jiaozhou Bay, from the northeastern coastal waters along the northern coastal waters to the northwestern coastal waters, the range of water temperature changes was 12.82–13.70°C, and the interval length of seawater temperature changes was 0.88°C. From the northern area to the southern area, the range of water temperature changes was 7.52–13.70°C, and the interval length of seawater temperature was 6.18°C. In August, the range of water temperature changes was 24.60–30.90°C, and the interval length of seawater temperature was 6.30°C. In the eastern area of Jiaozhou Bay, the water temperature in the coastal waters of the estuary of Jiaozhou Bay was 30.90°C, forming a high temperature area. In the coastal waters of Jiaozhou Bay from the northwest to the north, the range of water temperature changes was 27.32–27.37°C and the interval length of seawater temperature was 0.05°C. In April and August, the increase of water temperature in the coastal waters from the northeast along the north to the northwest of Jiaozhou Bay was mainly caused by the shortwave radiation from the sun and sky and the longwave radiation from the atmosphere which continuously offered heat to the seawater. In April, it formed a circular water area with low temperature centered with the central water area of Jiaozhou Bay, whose water temperature ranged within 7.52–8.51°C. Thus, there was no heat source to provide heat to the central waters of Jiaozhou Bay, resulting a loop-locked low water temperature area in the center of the bay. In August, in the eastern part of Jiaozhou Bay, that is, the coastal waters in the estuary of Haibo River, the water temperature reached a relatively high value, 30.90°C. The source of the increase in water temperature was the transportation of heat from Haibo River, which transferred the heat of the river to the surface seawater.


2021 ◽  
Vol 233 ◽  
pp. 03048
Author(s):  
Dongfang Yang ◽  
Haixia Li ◽  
Dongmei Jing ◽  
Mingjing Tian ◽  
Longlei Zhang

According to the data of May, August and October 1992, the range of Hg content in Jiaozhou Bay waters was 0.009-0.050 μg /L, which met the water quality standard of class I sea water. This showed that in terms of Hg content, in May, August and October, the water of Jiaozhou Bay was clean and free from any Hg pollution. In May, the range of Hg content in Jiaozhou Bay waters was 0.009-0.038 μg /L. In August, the range of Hg content in Jiaozhou Bay waters was 0.021-0.050 μg/L. In October, the range of Hg content in Jiaozhou Bay waters was 0.011-0.040 μg /L. There were two sources of Hg content in Jiaozhou Bay waters, surface runoff and atmospheric deposition. The Hg content from surface runoffwas 0.038-0.040 μg /L, and that from atmospheric deposition was 0.050 μg /L. The model diagram was established to show the different paths and contents of Hg content in the process of input into Jiaozhou Bay. In May and October, the surface runoff was not polluted by any Hg content. In August, atmospheric deposition was not contaminated by any Hg content. That revealed that Hg, humans issued to land and atmosphere, finally got to the ocean. There were two paths. One is that human beings discharge Hg into the atmosphere, and the Hg content reached into the ocean through atmospheric sedimentation. The Hg content from atmospheric sedimentation was relatively high, but the transportation time was relatively short. The other is that human beings discharge Hg content to the land. Through surface runoff, the Hg content reached into the ocean, and the Hg content from surface runoff was relatively low, but the transportation time was relatively short. With more and more paths, Hg content was decreasing.


2021 ◽  
Vol 233 ◽  
pp. 03041
Author(s):  
Dongfang Yang ◽  
Tao Jiang ◽  
Linzhen Wei ◽  
Shengjun Zhang ◽  
Xinmin Huang

Based on the investigation data of Jiaozhou Bay in 1992, this thesis studied the present situation and horizontal distribution of Hg content in the bottom of Jiaozhou Bay mouth. The results showed that in May, August and October, the range of Hg content in the bottom ofJiaozhou Bay was 0.007-0.040 μg/L, which was in line with the national water quality standard for class I seawater. This showed that in terms of Hg content, the bottom water of Jiaozhou Bay from the center of the bay to the south of the bay mouth was not polluted by any Hg content in May, August and October. In the bottom of Jiaozhou Bay, in May, the range of Hg content in Jiaozhou Bay was 0.013-0.019 μg/L. In August, the range of Hg content in Jiaozhou Bay was 0.021-0.025 μg/L. In October, the range of Hg content in Jiaozhou Bay was 0.007-0.040 μg/L. Therefore, in May, August and October, the water of Jiaozhou Bay was not polluted by any Hg content. In May, a high sedimentation of Hg contentwas in the coastal waters of the eastern part of the Bay. In August, a high sedimentationof Hg content was in the coastal waters and the estuary waters in the east of the Bay. In October, a high sedimentation of Hg content was in the south of the bay mouth. However, from May to August, and then to October, the lowest Hg content sedimentationwas in the central waters of the Bay.


2017 ◽  
Vol 13 (2) ◽  
pp. 111-119
Author(s):  
Lela Uyara ◽  
Pieter Kunu ◽  
Silwanus M Talakua

The study aims to determine the quality of clean water in the villages of Wainitu, Batumerah, Amahusu and Halong by comparing the result of water quality analysis with water quality standard. Water quality analysis includes Physiscal, Chemical, and Microbiological parameters. This research uses descriptive method, this method describes systematics, accurate about facts and characteristic of the quality of clean water of each research location. The results showed that the source of clean water in the village of Batumerah did not meet the standard of clean water quality standards indicated by the number of E. coli and the high total coliform.  Keywords: standard quality of clean water, water quality, Wainitu, Batumerah, Amahusu and Halong villages   ABSTRAK Penelitian yang bertujuan untuk menetapkan kualitas air bersih di Desa Wainitu, Batumerah, Amahusu dan Halong, dengan membandingkan hasil analisis kualitas air dengan standar baku mutu air bersih. Analisis kualitas air meliputi parameter fisika, kimia dan mikrobiologi. Penelitian ini menggunakan metode deskriptif; metode ini menggambarkan sicara sistematis, akurat, fakta dan karakteristik mengenai kualitas air bersih di masing-masing lokasi penelitian. Hasil penelitian menunjukkan bahwa sumber air bersih di Desa Batumerah tidak memenuhi standar baku mutu air bersih yang ditunjukkan oleh jumlah E. coli dan total Koliform yang tinggi. Kata Kunci: baku mutu air bersih, Desa Wainitu, Batumerah, Amahusu dan Halong, kualitas air


1991 ◽  
Vol 23 (1-3) ◽  
pp. 1-10 ◽  
Author(s):  
Takeshi Goda

The management and status of public water bodies in Japan is discussed. The environmental quality standards which have been set and the levels of compliance with these standards are shown. The water quality of Japanese rivers, lakes, reservoirs, wetlands and coastal waters is described, and eutrophication problems are mentioned. The effects of changes in population density and levels of recycling of industrial wastewaters on the quality of water bodies are discussed. Almost 75% of industrial wastewater is now recycled. Per capita availability of freshwater in Japan is comparatively low, and the construction of 530 dams, in addition to the 2393 dams already in operation, is planned. Irrigation effluents from paddy fields are a major factor which influences river water quality in Japan. The improvement of water quality using various methods is discussed.


2017 ◽  
Vol 14 (3) ◽  
pp. 251
Author(s):  
Rita Yulianti ◽  
Emi Sukiyah ◽  
Nana Sulaksana

Daerah penelitian terletak di desa Muaro Limun, Kecamatan Limun Kabupaten Sarolangun Provinsi Jambi. Sungai limun, salah satu sungai besar di daerah kabupaten sarolangun yang dimanfaatkan oleh mayarakat sekitarnya sebagai sumber penghidupan. Penelitian bertujuan untuk mengetahui pengaruh kegiatan penambangan terhadap kualitas air sungai Batang Limun, dan perubahan sifat fisik dan  kimia yang diakibatkan   kegiatan penambangan.Metode yang digunakan adalah  metode grab sampel, serta stream sedimen untuk dianalis di laboratorium. Sejumlah sampel diambil di beberapa lokasi Penambangan Emas berdasarkan Aliran Sub-DAS dan dibandingkan dengan beberapa sampel lain yang diambil pada lokasi yang belum terkontaminasi oleh kegiatan penambangan. Analisis kualitas air mengacu pada  SMEWWke 22 tahun 2012 dan standar baku mutu air kelas II dalam PP No 82 yang dikeluarkan oleh Menteri Kesehatan No. 492/Menkes/Per/IV/2010. Diketahui sungai Batang Limun telah mengalami perubahan karakteristik fisika dan kimia. Dari grafik  kosentrasi kekeruhan, pH, TSS, TDS  Cu, Pb, Zn, Mn, Hg terlihat bahwa penambang emas tanpa izin (PETI) dengan cara amalgamasi yang menyebabkan terjadinya penurunan kualitas air sungai. Sejak tahun 2009 sampai tahun 2015  sungai Limun dan sekitarnya terus mengalami penurunan kualitas air. Penurunan kualitas yang cukup tinggi terjadi  yaitu peningkatan nilai Rata-rata konsentrasi merkuri pada sungai Batang Limun dari 0,18ppb (0,00018 mg/l)  menjadi 0,3ppb (0,0003 mg/l), peningkatan tersebut dipengaruhi oleh proses kegiatan penambangan dan nilai tersebut masih dibawah standar baku mutu air kelas II  pp nomor 82 tahun 2010.Kata kunci :   Kualitas Air, Sungai Limun,TSS, Merkuri, PETI Limun river is one of the major rivers in the area of Sarolangun, which utilized by the society as a source of livelihood. The aim of study  to analyze the effect of mining activities on  the water quality of Batang Limun River, and the changes of physical and chemical properties of water. The method used are grab  and stream samples to  sediment analyzed in the laboratory. A number of samples were taken at several locations based Flow Gold Mining Sub-watershed and compared to some other samples taken at the location that has not been contaminated by mining activities. Water quality analysis referring to SMEWW, 22nd edition 2012 and refers to Regulation No 82 that issued by Minister of Health No. 492 / Menkes / Per / IV / 2010.The results showed that the Limun river has undergone chemical changes in physical characteristics. These symptoms can be seen from the discoloration of clear water in the river before the mine becomes brownish after mining, based on graphic of muddiness concentration: pH, TSS, TDS Cu, Pb, Zn, Mn, Hg have seen that  the illegal miner which used amalgamation caused deterioration in water quality, data from 2009 to 2015 Limun river and surrounding areas continue to experience a decrease in water quality. The decreasing of water quality showed in the TSS parameter which found in the area is to high based on  the standard of water quality class II pp number 82 of 2010. An increase in the value of average concentrations of mercury in the Batang Limun river before mine 0,18ppb (0.00018 mg / l) into 0,3ppb (0.0003 mg / l) on the river after the mine. The increase was affected by the mining activities and the value is still below the air quality standard Grade II pp numbers 82 years 2010, although the value is still below with the standards quality standard, the mercury levels in water should still be a major concern because if it accumulates continuously in the water levels will increase and will be bad for health. In contrast to the concentration of mercury in sediments that have a higher value is 153 ppb (0,513ppm ) .Key Words :   Water Quality, Limun River, Mercury, Illegal gold mining


Author(s):  
Rizky Muliani Dwi Ujianti ◽  
Althesa Androva

 Abstract. Banjir Kanal Barat is a river in the Garang watershed, Semarang City, Central Java, Indonesia. Its function is as a source of water for the community. The level of pollution in this river is already high. The purpose of this study is to provide advice to governments, communities and related stakeholders to realize integrated river management, and fisheries-based food security is achieved. This research method is: analyzing the water quality of the Banjir Kanal Barat river, and analyzing the amount of faecal and total coliform bacteria content in the Banjir Kanal Barat river, and analyzing how to overcome the decline in the quality of waters of the Banjir Kanal Barat river due to faecal and total coliform bacteria pollution. The results showed that the water quality at the research location was still in the quality standard. The content of coliform dan faecal bacteria at the study site exceeds the quality standard, this is due to the influence of domestic waste from households. The thing that needs to be done is counseling the existence of a clean and healthy life, especially for people who are still throwing domestic waste into the river. The existence of water purification equipment is also very necessary to overcome this problem. Water quality management can be done with policy analysis. Regulations related to water quality management can be analyzed and then given solutions and recommendations related to these rules so that policies can be taken that are sustainable, integrated, and coordinated between various parties in managing river water quality and food security. Keywords: food security, water quality, river, faecal coliform, total coliform


2017 ◽  
Vol 3 (2) ◽  
pp. 104
Author(s):  
Dewi Elfidasari ◽  
Nita Noriko ◽  
Yunus Effendi ◽  
Riris Lindiawati Puspitasari

<div class="WordSection1"><p><em>Abstrak</em> - <strong>Situ Lebak Wangi merupakan situ yang berada di daerah Bogor, dan awalnya dimanfaatkan sebagai tempat penampungan air saat musim hujan untuk peningkatkan persediaan  air tanah.  Saat ini, Situ Lebak Wangi dimanfaatkan sebagai tempat pembuangan limbah oleh masyarakat. Hal ini dapat menyebabkan perubahan kualitas baik fisik, kimia dan biologi  perairan situ. Untuk itu perlu dilakukan penelitian terhadap kualitas fisik, kimia dan biologi perairan Situ Lebak Wangi agar diperoleh informasi mengenai kualitas perairannya sehingga dapat disosialisasikan kepada masyarakat di sekitarnya nilai penting konservasi, pengelolaan dan pemanfaatan situ tersebut. Hasil pengukuran sifat fisik dan kimia air menunjukkan bahwa suhu di perairan Situ Lebak Wangi masih memenuhi baku mutu air kelas 1, nilai total padatan terlarut perairan Situ masih di bawah ambang batas baku mutu yang dipersyaratkan, nilai kecerahan di perairan Situ Lebak Wangi berkisar antara 67,17 – 80,83 cm dengan nilai rata-rata 74,46 cm, nilai pH perairan danau lebih rendah dari perairan sungai, yaitu berkisar antara 6,60–8-80. Pengukuran DO menunjukkan bahwa di perairan danau konsumsi oksigennya lebih tinggi, sedangkan hasil BOD5 menunjukkan bahwa perairan Situ Lebak Wangi sudah tercemar oleh bahan organik mudah urai (BOD5). Nilai daya hantar listrik berkisar antara 112,0 – 118,0 µhos/cm. Hasil analisa kualitas air Situ Lebak Wangi secara keseluruhan menunjukkan bahwa perairan tersebut tidak layak untuk dijadikan sebagai air baku, karena mengandung bakteri patogen Salmonella-Shigella yang merupakan penyebab thypus dan kolera. </strong></p><p>                                                          </p><p><strong><em>Keata Kunci </em></strong> - kualitas fisik, kimia dan biologi; Situ Lebak Wangi; Perairan; Baku mutu air</p></div><br clear="all" /><p> </p><p><em>Abstract</em> - <strong>Situ Lebak Wangi is a place located in the Bogor area, and was originally used as a water reservoir during the rainy season to increase groundwater supply. Currently, Situ Lebak Wangi is used as a waste disposal site by the community. This can lead to changes in the quality of both physical, chemical and biological waters there. Therefore, research on the physical, chemical and biological qualities of waters of Situ Lebak Wangi to obtain information about the quality of the waters so that it can be socialized to the community around the importance of conservation, management and utilization of the site. The result of measurement of physical and chemical properties of water shows that the temperature in Situ Lebak Wangi waters still meet the water quality standard class 1, the total dissolved solids of waters Situ is still below the required quality standard threshold, the brightness value in Situ Lebak Wangi waters ranges between 67, 17 - 80.83 cm with an average rating of 74.46 cm, the pH value of the lake waters lower than river waters, which ranged from 6.60-8-80. Measurements of DO indicate that in lake waters oxygen consumption is higher, whereas BOD5 results show that waters Situ Lebak Wangi already contaminated by organic material easily explained (BOD5). The electrical conductivity values range from 112.0 - 118.0 μhos / cm. The result of Situ Lebak Wangi water quality analysis as a whole shows that the water is not feasible to serve as raw water, because it contains Salmonella-Shigella pathogen bacteria which is the cause of thypus and cholera.</strong></p><p><strong> </strong></p><p><strong><em>Keywords</em></strong><strong> - </strong><em>physical quality, chemistry and biology, </em><em>Situ Lebak Wangi, </em><em>Waters, Water quality standards</em><strong><em></em></strong></p>


2020 ◽  
Vol 49 (1) ◽  
pp. 191-196
Author(s):  
HO Salah ◽  
IM Sujaul ◽  
Md Abdul Karim ◽  
MH Mohd Nasir ◽  
A Abdalmnam ◽  
...  

Assessment of the quality of tap water at Kuantan area of Pahang, Malaysia was investigated. The parameters analyzed were total coliform, Escherichia coli, pH, total hardness, sulfate, and selected heavy metal based on drinking water quality standard Malaysia and WHO. The results showed that the fungi in the tap water in Kuantan area in different concentrations were Aspergillus sp., Rhodotorula mucilaginosa, Penicillium citrinum, Cladosporium cladosporioides, Cerrena sp., Aspergillus aculeatus, A. flavus, Cryptococcus sp., Cladosporium perangustum, Purpureocillium lilacinum and Candida catenulata. The residual free chlorine varied from 0.05 to 1.97 mg/l.


2003 ◽  
Vol 47 (7-8) ◽  
pp. 125-131 ◽  
Author(s):  
S. Lemmens

Brown and Root has participated in extensive investigations of the effects of the discharges from Perth's Ocean Outlets, as part of the Perth Long-Term Ocean Outlet Monitoring (PLOOM) Programme (1995 to 2001). The major environmental concern with these discharges is the potential for nutrients in the wastewater to stimulate excess primary production in the sea. PLOOM, and its predecessor, the Perth Coastal Waters Study, have been instrumental in developing parameters for the measurement of the performance of Perth's ocean outlets. These parameters are currently being integrated in the development of Environmental Quality Criteria (EQC) for the Perth region. EQC play an important role in the management framework by providing the quantitative benchmarks for measuring success in achieving the environmental quality objectives. PLOOM has monitored a range of environmental parameters in the Perth Metropolitan area, including water quality, nutrient levels, water circulation and plume dilution, levels of metals and pesticides present in the marine environment, and the environmental health of benthic communities, in particular of temperate reef systems. During the PLOOM studies, a valuable tool was being developed to monitor outlet performance. Artificial reef structures (“periphyton collectors”) were placed in the plume trajectory. Here, periphyton is defined as: the microalgae (diatoms and microscopic filamentous forms), algal propagules, bacteria, microfauna and particulate material that are found in a mucous-like layer commonly coating seagrass leaves, and that initially colonise artificial surfaces. The advantage of periphyton collectors is that these largely remove the effects of natural variability, can be placed at any depth and distance from a potential nutrient source, provide an easy, cost effective measure of environmental impact, integrated over an extended period (one month), and produce tangible results which can be interpreted by the wider community, as well as legislative authorities and by outlet managers. In addition, outlet performance can be measured by means of these tools, and tested against accepted environmental criteria. Between 1995-2001, periphyton collectors, consisting of 15 × 15 cm PVC plates attached to moorings at fixed depths (2, 4 and 8 m), were deployed for one month during spring, summer and autumn, at increasing distance from the source (250 and 500 m distance to the north, east, west, and south, and at 1,000, 2,000, 4,000 m to the north and south only). After retrieval, the collectors were analysed for total biomass (g AFDW m−2), calcium carbonate content (% AFDW) and chlorophyll levels (chlorophyll a m−2). The results confirmed the predictions made by hydrodynamic modelling (e.g. Zic and Gondinoudis, 2002) and are in accordance with measured nutrient and chlorophyll a levels around the outlets, and demonstrated that the zone of influence was strongly determined by the prevailing currents (to the north), and largely restricted to surface layers (2-4 m depth). Both biomass and chlorophyll content proved reliable parameters, which have the potential to be used as Environmental Quality Criteria (EQC's) for the management of Perth's coastal waters. These EQC's were developed in collaboration with legislative authorities, as part of draft criteria, in accordance with national guidelines: ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.


Sign in / Sign up

Export Citation Format

Share Document