scholarly journals Real-Time Simulation of Force Parameters for Diagnostics of Ceramic Tool Condition During Milling of High-Hardness Steel Parts

2019 ◽  
Vol 224 ◽  
pp. 05004
Author(s):  
Marina A. Volosova ◽  
Vladimir D. Gurin ◽  
Anton E. Seleznev ◽  
Leonid E. Shvartsburg ◽  
Mariuch Jenek

Cutting ceramics is a high-performance tool material for high-speed machining of hard steels and alloys. Ceramic materials have high hardness and heat resistance in a wide range of temperatures, as well as chemical passivity in relation to most of the workpieces. However, the wider application of ceramic cutting tools is limited due to the low reliability - unpredictable fragile fracture of the cutting edge in different periods of operation. The study discusses mathematical simulations of force parameters in the milling of hardened steels using ceramic cutting tools. The simulation results were used to develop a system for the metalworking technological system state diagnostics. Mathematical software for calculations of the set of force parameters through computer simulations with taking into account the tool wear has been developed. The developed system allows calculating and graphically displaying a set of force parameters appearing during face milling of hardened steels in the real-time.

Alloy Digest ◽  
1982 ◽  
Vol 31 (9) ◽  

Abstract AISI Type O7 is a high-carbon, low-alloy tools designed for many types of cold-work cutting tools where the high-alloy, high-speed steels are not required. It has moderate hardenability, develops high hardness, holds a keen cutting edge and has excellent resistance to abrasion. Type O7 is used for a wide range of cold-working tools such as broaches, blanking dies, punches, thread-rolling dies, paper knives and wood-working tools. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, and machining. Filing Code: TS-404. Producer or source: Tool steel mills.


2007 ◽  
Author(s):  
R. E. Crosbie ◽  
J. J. Zenor ◽  
R. Bednar ◽  
D. Word ◽  
N. G. Hingorani

2021 ◽  
Vol 11 (10) ◽  
pp. 4610
Author(s):  
Simone Berneschi ◽  
Giancarlo C. Righini ◽  
Stefano Pelli

Glasses, in their different forms and compositions, have special properties that are not found in other materials. The combination of transparency and hardness at room temperature, combined with a suitable mechanical strength and excellent chemical durability, makes this material indispensable for many applications in different technological fields (as, for instance, the optical fibres which constitute the physical carrier for high-speed communication networks as well as the transducer for a wide range of high-performance sensors). For its part, ion-exchange from molten salts is a well-established, low-cost technology capable of modifying the chemical-physical properties of glass. The synergy between ion-exchange and glass has always been a happy marriage, from its ancient historical background for the realisation of wonderful artefacts, to the discovery of novel and fascinating solutions for modern technology (e.g., integrated optics). Getting inspiration from some hot topics related to the application context of this technique, the goal of this critical review is to show how ion-exchange in glass, far from being an obsolete process, can still have an important impact in everyday life, both at a merely commercial level as well as at that of frontier research.


2021 ◽  
Author(s):  
Mei Yang ◽  
Yishu Zhang ◽  
Haoxing You ◽  
Richard Smith ◽  
Richard D. Sisson

Abstract Selective laser melting (SLM) is an additive manufacturing technique that can be used to make the near-net-shape metal parts. M2 is a high-speed steel widely used in cutting tools, which is due to its high hardness of this steel. Conventionally, the hardening heat treatment process, including quenching and tempering, is conducted to achieve the high hardness for M2 wrought parts. It was debated if the hardening is needed for additively manufactured M2 parts. In the present work, the M2 steel part is fabricated by SLM. It is found that the hardness of as-fabricated M2 SLM parts is much lower than the hardened M2 wrought parts. The characterization was conducted including X-ray diffraction (XRD), optical microscopy, Scanning Electron Microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) to investigate the microstructure evolution of as-fabricated, quenched, and tempered M2 SLM part. The M2 wrought part was heat-treated simultaneously with the SLM part for comparison. It was found the hardness of M2 SLM part after heat treatment is increased and comparable to the wrought part. Both quenched and tempered M2 SLM and wrought parts have the same microstructure, while the size of the carbides in the wrought part is larger than that in the SLM part.


2017 ◽  
Vol 736 ◽  
pp. 86-90 ◽  
Author(s):  
Vyacheslav Maksarov ◽  
A. Khalimonenko

The article considers the problems of forecasting the performance of cutting tools equipped with replaceable ceramic cutting bits. It is proposed to forecast the operability of ceramic tools on the ground of dependence between its performance characteristics and the microstructural parameters of the tool material. It is proposed to determine the parameters of ceramic bits microstructure by a nondestructive testing methods based on measuring the specific electrical resistance of ceramic materials. As a result of the study we have undertaken, a relationship was detected between the performance and specific electrical resistance of ceramic cutting tools.


Author(s):  
Manudul Pahansen de Alwis ◽  
Karl Garme

The stochastic environmental conditions together with craft design and operational characteristics make it difficult to predict the vibration environments aboard high-performance marine craft, particularly the risk of impact acceleration events and the shock component of the exposure often being associated with structural failure and human injuries. The different timescales and the magnitudes involved complicate the real-time analysis of vibration and shock conditions aboard these craft. The article introduces a new measure, severity index, indicating the risk of severe impact acceleration, and proposes a method for real-time feedback on the severity of impact exposure together with accumulated vibration exposure. The method analyzes the immediate 60 s of vibration exposure history and computes the severity of impact exposure as for the present state based on severity index. The severity index probes the characteristic of the present acceleration stochastic process, that is, the risk of an upcoming heavy impact, and serves as an alert to the crew. The accumulated vibration exposure, important for mapping and logging the crew exposure, is determined by the ISO 2631:1997 vibration dose value. The severity due to the impact and accumulated vibration exposure is communicated to the crew every second as a color-coded indicator: green, yellow and red, representing low, medium and high, based on defined impact and dose limits. The severity index and feedback method are developed and validated by a data set of 27 three-hour simulations of a planning craft in irregular waves and verified for its feasibility in real-world applications by full-scale acceleration data recorded aboard high-speed planing craft in operation.


2011 ◽  
Vol 84-85 ◽  
pp. 228-231
Author(s):  
Jing Su ◽  
Yu Hua Zhang ◽  
Di Wang

For the excellent properties, super-hard tool material has received much attention from researchers. The development of super-hard tool material for high-speed cutting could brought high machining quality and surface precision. For an engineer, adopt high performance of tool material, for example wearing resistance, high stability of PCD (polycrystalline diamond) and PCBN (poly cubic boron nitride) can get more information for obtaining higher finished surface quality that cannot acquire just by common cutting process. This paper introduces super-hard cutters materials (PCD and PCBN) development, and discusses several material properties. The features of materials used in different cutting fields are given.


2016 ◽  
Vol 110 (3) ◽  
pp. 463a
Author(s):  
Fuyu Kobirumaki-Shimozawa ◽  
Kotaro Oyama ◽  
Togo Shimozawa ◽  
Takashi Ohki ◽  
Takako Terui ◽  
...  

2016 ◽  
Author(s):  
Katherine J. Dobson ◽  
Sophia B. Coban ◽  
Sam A. McDonald ◽  
Joanna Walsh ◽  
Robert Atwood ◽  
...  

Abstract. A variable volume flow cell has been integrated with state-of-the-art ultra-high speed synchrotron x-ray tomography imaging. The combination allows the first real time (sub-second) capture of dynamic pore (micron) scale fluid transport processes in 4D (3D + time). With 3D data volumes acquired at up to 20 Hz, we perform in situ experiments that capture high frequency pore-scale dynamics in 5–25 mm diameter samples with voxel (3D equivalent of a pixel) resolution of 2.5 to 3.8 µm. The data are free from motion artefacts, can be spatially registered or collected in the same orientation making them suitable for detailed quantitative analysis of the dynamic fluid distribution pathways and processes. The method presented here are capable of capturing a wide range of high frequency non equilibrium pore-scale processed including wetting, dilution, mixing and reaction phenomena, without sacrificing significant spatial resolution. As well as fast streaming (continuous acquisition) at 20 Hz, it also allows larger-scale and longer term experimental runs to be sampled intermittently at lower frequency (time-lapse imaging); benefiting from fast image acquisition rates to prevent motion blur in highly dynamic systems. This marks a major technical breakthrough for quantification of high frequency pore scale processes: processes that are critical for developing and validating more accurate multiscale flow models through spatially and temporally heterogeneous pore networks.


Sign in / Sign up

Export Citation Format

Share Document