scholarly journals A High-Granularity Timing Detector for the Phase-II upgrade of the ATLAS Calorimeter system: detector concept, description and R&D and beam test results

2021 ◽  
Vol 253 ◽  
pp. 11012
Author(s):  
H. Imam

The particle flux increase (pile-up) at the HL-LHC with luminosities of L = 7.5 × 1034 cm−2 s−1 will have a significant impact on the reconstruction of the ATLAS detector and on the performance of the trigger. The forward region and the end-cap where the internal tracker has poorer longitudinal track impact parameter resolution, and where the liquid argon calorimeter has coarser granularity, will be significantly affected. A High Granularity Time Detector (HGTD) is proposed to be installed in front of the LAr end-cap calorimeter for the mitigation of the pileup effect, as well as measurement of luminosity. It will have coverage of 2.4 to 4.0 from the pseudo-rapidity range. Two dual-sided silicon sensor layers will provide accurate timing information for minimum-ionizing particles with a resolution better than 30 ps per track (before irradiation), for assigning each particle to the correct vertex. The readout cells are about 1.3 mm × 1.3 mm in size, which leads to a high granular detector with 3 million channels. The technology of low-gain avalanche detectors (LGAD) with sufficient gain was chosen to achieve the required high signal-to-noise ratio. A dedicated ASIC is under development with some prototypes already submitted and evaluated. The requirements and general specifications of the HGTD will be maintained and discussed. R&D campaigns on the LGAD are carried out to study the sensors, the related ASICs and the radiation hardness. Both laboratory and test beam results will be presented.

2018 ◽  
Vol 616 ◽  
pp. A82 ◽  
Author(s):  
B. Proxauf ◽  
R. da Silva ◽  
V. V. Kovtyukh ◽  
G. Bono ◽  
L. Inno ◽  
...  

We gathered more than 1130 high-resolution optical spectra for more than 250 Galactic classical Cepheids. The spectra were collected with the optical spectrographs UVES at VLT, HARPS at 3.6 m, FEROS at 2.2 m MPG/ESO, and STELLA. To improve the effective temperature estimates, we present more than 150 new line depth ratio (LDR) calibrations that together with similar calibrations already available in the literature allowed us to cover a broad range in wavelength (5348 ≤ λ ≤ 8427 Å) and in effective temperature (3500 ≤ Teff ≤ 7700 K). This gives us the unique opportunity to cover both the hottest and coolest phases along the Cepheid pulsation cycle and to limit the intrinsic error on individual measurements at the level of ~100 K. As a consequence of the high signal-to-noise ratio of individual spectra, we identified and measured hundreds of neutral and ionized lines of heavy elements, and in turn, have the opportunity to trace the variation of both surface gravity and microturbulent velocity along the pulsation cycle. The accuracy of the physical parameters and the number of Fe I (more than one hundred) and Fe II (more than ten) lines measured allowed us to estimate mean iron abundances with a precision better than 0.1 dex. We focus on 14 calibrating Cepheids for which the current spectra cover either the entire or a significant portion of the pulsation cycle. The current estimates of the variation of the physical parameters along the pulsation cycle and of the iron abundances agree very well with similar estimates available in the literature. Independent homogeneous estimates of both physical parameters and metal abundances based on different approaches that can constrain possible systematics are highly encouraged.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jia Liu ◽  
Mingyu Zhang ◽  
Chaoyong Wang ◽  
Rongjun Chen ◽  
Xiaofeng An ◽  
...  

In this paper, upper bound on the probability of maximum a posteriori (MAP) decoding error for systematic binary linear codes over additive white Gaussian noise (AWGN) channels is proposed. The proposed bound on the bit error probability is derived with the framework of Gallager’s first bounding technique (GFBT), where the Gallager region is defined to be an irregular high-dimensional geometry by using a list decoding algorithm. The proposed bound on the bit error probability requires only the knowledge of weight spectra, which is helpful when the input-output weight enumerating function (IOWEF) is not available. Numerical results show that the proposed bound on the bit error probability matches well with the maximum-likelihood (ML) decoding simulation approach especially in the high signal-to-noise ratio (SNR) region, which is better than the recently proposed Ma bound.


1990 ◽  
Vol 121 ◽  
pp. 279-288
Author(s):  
C. Fröhlich ◽  
T. Toutain ◽  
R.M. Bonnet ◽  
A.V. Bruns ◽  
J.P. Delaboudinière ◽  
...  

AbstractIPHIR (Interplanetary Helioseismology by IRradiance measurements) is a solar irradiance experiment on the USSR planetary mission PHOBOS to Mars and its satellite Phobos. The experiment was built by an international consortium including PMOD/WRC, LPSP, SSD/ESA, KrAO and CRIP. The sensor is a three channel sunphotometer (SPM) which measures the solar spectral irradiance at 335, 500 and 865 nm with a precision of better than 1 part-per-million (ppm). It is the first experiment dedicated to the investigation of solar oscillations from space. The results presented here are from a first evaluation of data gathered during 160 days of the cruise phase of PHOBOS II, launched on July, 12th 1988. The long uninterrupted observation produces a spectrum of the solar p-mode oscillations in the 5-minute range with a very high signal-to-noise ratio, which allows an accurate determination of frequencies and line shapes of these modes.


2014 ◽  
Vol 979 ◽  
pp. 46-49
Author(s):  
Piya Kovintavewat ◽  
Santi Koonkarnkhai

Thermal asperity (TA) resulting from the collision between the slider and the asperity on a magnetic medium during read process can deteriorate the performance of hard disk drives (HDDs). Without TA detection and correction algorithms, the system performance can be unacceptable, depending on how severe the TA is. This paper presents an improved TA suppression method for coded partial response (PR) channels, which consists of two channels running in parallel. Specifically, one channel is matched to the target H(D), while the other is matched to the target H(D)G(D), where G(D) = 1 – D2 is a bandpass filter and D is a delay operator. The soft-output Viterbi algorithm (SOVA) detector in the H(D) channel yields the high-quality soft information in absence of the TA, while that in the G(D)H(D) channel produces the high-quality soft information in presence of the TA. Then, the overall soft information chosen from these two detectors, depending on if a TA is detected or not, is sent to the decoder according to the turbo equalization principle. Experimental results show that the proposed method performs better than the conventional and the previously proposed ones, when operating at high signal-to-noise ratio (SNR) region where a practical HDD works.


2022 ◽  
Vol 163 (2) ◽  
pp. 46
Author(s):  
Kate Y. L. Su ◽  
G. H. Rieke ◽  
M. Marengo ◽  
Everett Schlawin

Abstract We report Spitzer 3.6 and 4.5 μm photometry of 11 bright stars relative to Sirius, exploiting the unique optical stability of the Spitzer Space Telescope point-spread function (PSF). Spitzer's extremely stable beryllium optics in its isothermal environment enables precise comparisons in the wings of the PSF from heavily saturated stars. These bright stars stand as the primary sample to improve stellar models, and to transfer the absolute flux calibration of bright standard stars to a sample of fainter standards useful for missions like JWST and for large ground-based telescopes. We demonstrate that better than 1% relative photometry can be achieved using the PSF wing technique in the radial range of 20″–100″ for stars that are fainter than Sirius by 8 mag (from outside the saturated core to a large radius where a high signal-to-noise ratio profile can still be obtained). We test our results by (1) comparing the [3.6]−[4.5] color with that expected between the WISE W1 and W2 bands, (2) comparing with stars where there is accurate K S photometry, and (3) also comparing with relative fluxes obtained with the DIRBE instrument on COBE. These tests confirm that relative photometry is achieved to better than 1%.


2015 ◽  
Vol 6 (3) ◽  
Author(s):  
Febri Liantoni ◽  
Nanik Suciati ◽  
Chastine Fatichah

Abstract. Ant Colony Optimization (ACO) is an optimization algorithm which can be used for image edge detection. In traditional ACO, the initial ant are randomly distributed. This condition can cause an imbalance ants distribution. Based on this problem, a modified ant distribution in ACO is proposed to optimize the deployment of ant based gradient. Gradient value is used to determine the placement of the ants. Ants are not distributed randomly, but are placed in the highest gradient. This method is expected to be used to optimize the path discovery. Based on the test results, the use of the proposed ACO modification can obtain an average value of the Peak Signal to Noise Ratio (PSNR) of 12.724. Meanwhile, the use of the traditional ACO can obtain an average value of PSNR of 12.268. These results indicate that the ACO modification is capable of generating output image better than traditional ACO in which ants are initially distributed randomly.Keywords: Ant Colony Optimization, gradient, Edge Detection, Peak Signal to Noise Ratio Abstrak. Ant Colony Optimization (ACO) merupakan algoritma optimasi, yang dapat digunakan untuk deteksi tepi pada citra Pada ACO tradisional, semut awal disebarkan secara acak. Kondisi ini dapat menyebabkan ketidakseimbangan distribusi semut. Berdasarkan permasalahan tersebut, modifikasi distribusi semut pada ACO diusulkan untuk mengoptimalkan penempatan semut berdasarkan gradient. Nilai gradient digunakan untuk menentukan penempatan semut. Semut tidak disebar secara acak akan tetapi ditempatkan di gradient tertinggi. Cara ini diharapkan dapat digunakan untuk optimasi penemuan jalur. Berdasarkan hasil uji coba, dengan menggunakan ACO modifikasi yang diusulkan dapat diperoleh nilai rata-rata Peak Signal to Noise Ratio (PSNR) 12,724. Sedangkan, menggunakan ACO tradisional diperoleh nilai rata-rata PSNR 12,268. Hasil ini menunjukkan bahwa ACO modifikasi mampu menghasilkan citra keluaran yang lebih baik dibandingkan ACO tradisional yang sebaran semut awalnya dilakukan secara acak.Kata Kunci: Ant Colony Optimization, gradient, deteksi tepi, Peak Signal to Noise Ratio


1999 ◽  
Vol 171 ◽  
pp. 390-392
Author(s):  
Y.I. Izotov

AbstractThe high-quality long-exposure spectroscopic observations of the two most-metal deficient blue compact galaxies I Zw 18 and SBS 0335–052 are discussed. We confirm previous findings that underlying stellar absorption strongly influences the observed intensities of He I emission lines in the brightest NW component of I Zw 18, and hence this component should not be used for primordial He abundance determination. The effect of underlying stellar absorption, though present, is much smaller in the SE component. The extremely high signal-to-noise ratio spectrum (≥ 100 in the continuum) of the BCG SBS 0335–052 allows us to measure the helium mass fraction with precision better than 2% in nine different regions along the slit. The weighted mean of helium mass fraction in two most metal-deficient BCGs I Zw 18 and SBS 0335–052, Y=0.2462±0.0009, after correction for the He production in massive stars results in primordial He mass fraction Yp = 0.2452±0.0009.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 951-958
Author(s):  
Tianhao Liu ◽  
Yu Jin ◽  
Cuixiang Pei ◽  
Jie Han ◽  
Zhenmao Chen

Small-diameter tubes that are widely used in petroleum industries and power plants experience corrosion during long-term services. In this paper, a compact inserted guided-wave EMAT with a pulsed electromagnet is proposed for small-diameter tube inspection. The proposed transducer is noncontact, compact with high signal-to-noise ratio and unattractive to ferromagnetic tubes. The proposed EMAT is designed with coils-only configuration, which consists of a pulsed electromagnet and a meander pulser/receiver coil. Both the numerical simulation and experimental results validate its feasibility on generating and receiving L(0,2) mode guided wave. The parameters for driving the proposed EMAT are optimized by performance testing. Finally, feasibility on quantification evaluation for corrosion defects was verified by experiments.


2019 ◽  
Vol 9 (01) ◽  
pp. 47-54
Author(s):  
Rabbai San Arif ◽  
Yuli Fitrisia ◽  
Agus Urip Ari Wibowo

Voice over Internet Protocol (VoIP) is a telecommunications technology that is able to pass the communication service in Internet Protocol networks so as to allow communicating between users in an IP network. However VoIP technology still has weakness in the Quality of Service (QoS). VOPI weaknesses is affected by the selection of the physical servers used. In this research, VoIP is configured on Linux operating system with Asterisk as VoIP application server and integrated on a Raspberry Pi by using wired and wireless network as the transmission medium. Because of depletion of IPv4 capacity that can be used on the network, it needs to be applied to VoIP system using the IPv6 network protocol with supports devices. The test results by using a wired transmission medium that has obtained are the average delay is 117.851 ms, jitter is 5.796 ms, packet loss is 0.38%, throughput is 962.861 kbps, 8.33% of CPU usage and 59.33% of memory usage. The analysis shows that the wired transmission media is better than the wireless transmission media and wireless-wired.


2018 ◽  
Author(s):  
Satish Kodali ◽  
Liangshan Chen ◽  
Yuting Wei ◽  
Tanya Schaeffer ◽  
Chong Khiam Oh

Abstract Optical beam induced resistance change (OBIRCH) is a very well-adapted technique for static fault isolation in the semiconductor industry. Novel low current OBIRCH amplifier is used to facilitate safe test condition requirements for advanced nodes. This paper shows the differences between the earlier and novel generation OBIRCH amplifiers. Ring oscillator high standby leakage samples are analyzed using the novel generation amplifier. High signal to noise ratio at applied low bias and current levels on device under test are shown on various samples. Further, a metric to demonstrate the SNR to device performance is also discussed. OBIRCH analysis is performed on all the three samples for nanoprobing of, and physical characterization on, the leakage. The resulting spots were calibrated and classified. It is noted that the calibration metric can be successfully used for the first time to estimate the relative threshold voltage of individual transistors in advanced process nodes.


Sign in / Sign up

Export Citation Format

Share Document