scholarly journals Cytotoxic and genotoxic effects of perfluorododecanoic acid (PFDoA) in Japanese medaka

Author(s):  
Isaac O Ayanda ◽  
Min Yang ◽  
Zhang Yu ◽  
Jinmiao Zha

This study investigated the cytotoxic and genotoxic potential of perfluorododecanoic acid (PFDoA), a perfluorinated carboxylic chemical (PFC) that has broad applications and distribution in the environment in Japanese medaka, Oryzias latipes. Micronucleus (MN) test and Comet assay were used for the toxicity study. Three groups of fish were exposed to 0.1 mg/L, 0.5 mg/L and 2.5 mg/L concentration of the chemical for 28 days. Another group served as control. Sampling of the fish blood and liver were done after days 1, 4, 7, 14, 21 and 28 for analysis of different erythrocyte abnormalities and damage to DNA using the MN test and Comet assay respectively. Results showed that there was a significant time and concentration dependent increase (p < 0.05) in percent tail length of DNA and frequency of erythrocyte abnormalities. Nuclear abnormalities observed include micronucleus, fragmented apoptotic cells, lobed nuclei, and bean-shaped cells. Increase in induction of erythrocyte abnormalities and percent tail length of DNA peaked at days 14 and 7, respectively, after which there was a gradual decline. The results indicate that sub-chronic exposure of PFDoA to Japanese medaka caused DNA damage with a simultaneous induction of different erythrocyte abnormalities.

2013 ◽  
Vol 33 (3) ◽  
pp. 224-229 ◽  
Author(s):  
T Zhang ◽  
Q Zhao ◽  
Y Zhang ◽  
J Ning

The present study investigated the genotoxic effects of flumorph in various organs (brain, liver, spleen, kidney and sperm) of mice. The DNA damage, measured as comet tail length (µm), was determined using the alkaline comet assay. The comet assay is a sensitive assay for the detection of genotoxicity caused by flumorph using mice as a model. Statistically significant increases in comet assay for both dose-dependent and duration-dependent DNA damage were observed in all the organs assessed. The organs exhibited the maximum DNA damage in 96 h at 54 mg/kg body weight. Brain showed maximum DNA damage followed by spleen > kidney > liver > sperm. Our data demonstrated that flumorph had induced systemic genotoxicity in mammals as it caused DNA damage in all tested vital organs, especially in brain and spleen.


Author(s):  
Maher M Khadairi ◽  
Moayed Jy Al-amari ◽  
Ayad Mj Al-mamoori

  Objective: This study determined the effect of purified microcystin-leucine arginine (MC-LR) on biochemical and DNA damage parameters in rats.Methods: Utilization of preparative high-performance liquid chromatography in analysis, purification and collection of MC-LR, then intraperitoneally injection of purified MC-LR to rats. At the end of exposure, animals were sacrificed, and liver cell was isolated to measure the biochemical markers such as superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) as well as measured malondialdehyde (MDA), reactive oxygen species (ROS) and cytochrome P450 (Cyt P450), and DNA damage markers such as comet length, tail length, and tail moment were measured with the single cell gel electrophoresis also called comet assay.Results: The present results showed significantly increased activities of SOD as well as concentration of MDA, ROS with increasing concentration of MC-LR but the activities of CAT and GSH, as well as Cyt P450, were significantly decreased with increasing MC-LR dose while makers of DNA damage such as comet length, tail length, and tail moment also significantly increased with increasing MC-LR dose.Conclusion: This study demonstrated that chronic exposure to MC-LR toxin can induce alteration of biochemical and DNA damage markers.


2018 ◽  
Vol 28 (5) ◽  
pp. 9-18
Author(s):  
Carmen Martínez-Valenzuela ◽  
Stefan Waliszewski ◽  
María Elena Calderón-Segura ◽  
Mario Caba ◽  
Enrique Meza ◽  
...  

Pesticides constitute a heterogeneous category of chemicals designed for the control of pests affecting cultivated plants. Frequently, they are classified according to their chemical structure, organic and non-organic pesticides. Biomonitoring studies using somatic cells have been conducted to evaluate the possible genotoxic risk of occupationally exposed workers to pesticides. The aim of this study was to assess the genotoxic effects of pesticides in pilots occupationally exposed to these chemicals during aerial application in agricultural fields. The study groups comprised 30 pilots who applied aerial pesticides and 30 controls. The alkaline Comet Assay was performed on freshly collected peripheral whole blood lymphocytes. The nonparametric Mann-Whitney test was applied to compare the equality of two population medians. Additionally, a comparison of two groups according to age and years of work as quantitative variables and a one-way analysis of variance (Anova) with Tukey’s post hoc test were applied. To corroborate differences between groups, a regression analysis was performed to calculate the degree of correlation, expressing their magnitude by R2. Statistical significances were set at a p value of <0.05. The median of comet frequency, tail length (159.6 ± 16.8) and tail moment (16.75 ± 3.13) reveals statistically significant differences (p < 0.001) between exposed pilots and controls. The pilot group divided according to age reveals Deoxyribonucleic acid (DNA) damage which increases significantly when age of participant increases. Neither smoking nor alcohol consumption could be statistically linked to DNA damage. 


2017 ◽  
Vol 10 (3) ◽  
pp. 99-106 ◽  
Author(s):  
Islam M. Sadiqul ◽  
Saimon Mohiful Kabir ◽  
Zannatul Ferdous ◽  
Khan Mst. Mansura ◽  
Rahman Md. Khalilur

AbstractAnin vivostudy was carried out on the freshwater fishBarbonymus gonionotusto evaluate the genotoxic effects of the organophosphate quinalphos. The fish were exposed to sub-lethal doses of quinalphos (0%, 10%, 25%, and 50% of LC50) for a period of 30 days. Analysis of biochemical characteristics (protein and lipid contents of different organs), nuclear abnormalities of erythrocytes (NAE) and morphological abnormalities of erythrocytes (MAE) were performed on peripheral erythrocytes sampled at post-treatment intervals of 0 and 30 days. The biochemical results revealed a significant dose-dependent decline in protein and lipid contents and increase in the frequencies of NAE as well as MAE. Our findings also confirmed that the morphological deformations of erythrocytes in addition to NAE on fish erythrocytesin vivoare effective tools in determining the potential genotoxicity of organophosphates.


Genetika ◽  
2016 ◽  
Vol 48 (2) ◽  
pp. 617-627
Author(s):  
Stefan Dacic ◽  
Ninoslav Djelic ◽  
Milena Radakovic ◽  
Nada Lakic ◽  
Aleksandar Veselinovic ◽  
...  

Certain in vivo studies have shown that the application of adhesives directly onto the open pulp or on a thin layer of dentin causes inflammation and pulpal abscesses. This reaction is related to toxic effects of monomers from adhesives. It has been confirmed that after proper illumination the adhesives become less toxic. The aim of the study was to examine genotoxicity of non-polymerised, partly polymerised and polymerised adhesives on isolated human lymphocytes using the alkaline Comet assay. Adper Single bond2 and Adper Easy One/3M ESPE adhesive photopolymerisation was performed by Elipar Highlight 3M ESPE halogen lamp for 0, 10 and 40 sec, at final concentrations of 100, 200, 500 and 1000 ?g/mL. With both adhesives, photopolymerisation at 0 and 10 seconds showed statistically significant increase in DNA damage in comparision to the negative control (solvent). On the other hand, after 40 seconds of photopolymerisation of both adhesives in all tested concentrations, the degree of DNA damage in Comet assay had no significant difference (P>0.05, ?2 test) compared to the negative control. Therefore, only the 40 seconds of photopolymerisation prevented genotoxic effects of both adhesives in the Comet assay.


Author(s):  
Ahmet Cihat Öner ◽  
Adnan Ayan

This study was aimed to evaluate DNA fragmentation by using Comet assay in naturally infected sheep with Anaplasmosis before and after treatment with the Comet method, which shows DNA damage specifically. In the study, blood samples were collected from 10 Anaplosmosis infected and 10 healthy sheep. The anaplosmosis was diagnosed by clinical signs and symptoms. The infection was confirmed by Giemsa staining. The blood was collected from control group and infected group before and after the treatment, from the vena jugularis with the appropriate method. The DNA fragmentation was checked by using the Comet assay of blood cells. The data were analysed throught ANNOVA one-way. The result showed higher DNA fragmentation in sick animals diagnosed with anaplasmosis; tail length and tail moment values were found to be statistically significantly higher than the control group. When the data obtained after imidocarb (IMD) application were compared with obtained during the disease, a decreased DNA damage and tail moment was determined, however, these values higher than control. In this study, DNA damage and the extent of this damage were investigated by the Comet assay method using a healthy control group before and after treatment in animals with Anaplasmosis. When the findings obtained from the study were evaluated, it was seen that Anaplasma agents caused DNA damage and with the imidocarb application given for treatment, DNA damage was reduced and results close to healthy individuals were obtained.


2014 ◽  
Vol 03 (03) ◽  
pp. 137-142
Author(s):  
Rijied Thompson Swer ◽  
Dyutimoy Datta ◽  
Mary Hydrina D'Silva

Abstract Background and Objectives: The role of genomic instability resulting from chromosomal aberrations, gene mutations due to deletions, translocations and single gene defects is a known phenomenon leading to DNA damage. A deficient repair process is also attributed to the perpetuation of this damage. Placental insufficiency in pregnancy during late embryonic or early fetal period resulting in DNA damage gives rise to malformed phenotypes. An attempt was made to study the extent of DNA damage in non syndromic congenital malformations. Materials and Methods: A total of 20 children were studied. 10 of them, between 10 days to 5 years of age, presenting with non syndromic congenital anomalies formed the cases. An equal number of children matched for age criteria formed the controls. Lymphocytes collected from peripheral blood of these children were subjected to the standard comet assay, an highly sensitive, reliable, relatively inexpensive and reproducible single cell layer electrophoretic technique, where damaged DNA migrates out of the cell towards the anode forming a comet. The length of the tail is a measure of the DNA damage. Results: The malformations observed were those of urogenital, craniofacial and nervous systems. The mean comet tail lengths were 24.744 μm, 20.649 μm and 27.402 μm respectively. Comparing this to the mean tail length in controls with 1.992 μm, there was high statistical significance (P value <0.0001). Conclusion: Gene mutations, particularly involving Sex Region Determining (SRD) genes and Superoxide Dismutase (SOD) enzyme imbalances, have been implicated in these congenital malformations. Thus the comets seen in this study reflect the DNA damage due to the gene defects.


2018 ◽  
Vol 7 (03) ◽  
pp. 153-156
Author(s):  
Priyadharshini NA ◽  
Parkash Chand ◽  
Vishnu Bhatt S.

Abstract Background & aim : Early diagnosis of neonatal sepsis is important for effective management and recovery. The available methods for diagnosis were not useful in predicting outcome. In the present study the technique of single cell gel electrophoresis [comet assay] which measures DNA damage was used to predict the outcome of neonatal sepsis. Material & methods : Comet Assay [single cell gel electrophoresis, SCGE] was used as a tool to assess the DNA damage in 3 5 term neonates with sepsis .The comet parameters were compared between those who recovered and expired due to sepsis neonatorum. Results were analysed using independent student t test with SPSS software version 19. p values <0.05 was taken as significant. Results : Comet length [174.57 ± 46.66pm] and Tail length [ 114.63 ± 52.92pm] are the prime indicator of DNA damage and were significantly [p Z < .05 ] higher among the expired cases when compared to the recovered cases [113.70 ±32.72 and 46.40±37.57 respectively]. Receiver Operating Characteristic [ROC] curve for comet length and tail length showed comet length and tail length are high. Area under the curve [AUC] 0.867 with cut off value of 140.06pm [71.4% sensitivity, 85.7% specificity] and 0.862 with cut off value of 63.12pm [85% sensitivity, 71.4% specificity] respectively. Conclusion :Weconclude that SCGE can be used for predicting mortality in neonatal sepsis


2019 ◽  
Vol 12 (2) ◽  
pp. 163-172 ◽  
Author(s):  
D. Rašić ◽  
D. Želježić ◽  
N. Kopjar ◽  
D. Kifer ◽  
M. Šegvić Klarić ◽  
...  

The study aimed to check whether ochratoxin A (OTA) and citrinin (CIT) increase DNA damage in the kidney and liver of male Wistar rats (alkaline comet assay), clarify the oxidative nature of DNA damage (hOGG1-modified comet assay), and verify whether resveratrol (RSV) could ameliorate OTA+CIT-induced genotoxicity. Rats were treated orally with OTA (0.125 and 0.250 mg/kg bodyweight (bw)) and CIT (2 mg/kg bw), OTA+CIT combinations and OTA+CIT+RSV (0.250+2+20 mg/kg bw) for 21 days. Both alkaline and hOGG1-modified comet assay showed that DNA damage was more severe in rat kidneys than in liver following mycotoxin treatment. Alkaline comet assay revealed a higher intensity of DNA damage, particularly as measured by tail intensity in the kidneys. Both tail length and tail intensity were OTA dose-dependent, but in combined OTA+CIT treatment these values were similar to CIT alone and lower than in animals treated with single OTA, possibly due to induction of apoptosis. hOGG1-modified comet showed that OTA+CIT evoked greater oxidative DNA damage than single mycotoxins. RSV did not reduce DNA damage measured by alkaline comet assay, but hOGG1-modified comet showed that RSV ameliorated OTA+CIT genotoxicity in the kidneys. Apart from oxidative stress, other mechanisms of DNA damage are involved in OTA and CIT genotoxicity. In rat kidneys RSV can reduce but not overcome oxidative DNA damage induced by combined OTA and CIT.


Sign in / Sign up

Export Citation Format

Share Document