scholarly journals Study on the Cutting Efficiency of High-Speed Band Saw Blade by Taylor Tool Life and Fractal Equations

2018 ◽  
Vol 201 ◽  
pp. 01001 ◽  
Author(s):  
Sung-Hua Wu ◽  
Ming-Shyan Huang ◽  
Cheng-En Jhou ◽  
Chin-Chung Wei

The study proposed the chip formation steady-state model and cutting efficiency model for multi-cutters by Taylor tool life and fractal equation according to uniform chip thickness in high-speed band sawing process. Furthermore, a kind of new hook-tooth can be successfully applied on continuously uniformed chip formation in order to raise the production precision. The study developed MDOF cutting dynamics, which can be applied on multi-cutting process by Taylor tool life and fractal equations. Factors of affecting band-sawing included the cutting force, the cutting geometry, the cutting heat, the local stress-strain and the chip thickness formation uniformity. These factors had an important influence on tool wear, surface roughness, production precision and cutting efficiency in high-speed sawing process. The simulated results shown that, the wear resistance property is better at coating TiN 0.6 μm. In high-speed cutting process, the cutting improvement rate can be increased at least 13%. While the hook-tooth cutting speed achieved 120 m/min, comparing with non-coating cutting tooth, coating 0.6μm coating-layer can make the temperature decreased, obviously.

1961 ◽  
Vol 83 (4) ◽  
pp. 557-568 ◽  
Author(s):  
P. Albrecht

Introduction of the concept of ploughing into the metal-cutting process lead to the abandoning of the assumption of collinearity of the resultant force on tool face and on the shear plane. With this understanding the tool face force is found to produce a bending effect causing bending stresses in the shear zone. Study of the chip formation mechanism when varying cutting speed showed that increased bending action reduces the shear angle and vice versa. A set-up for the development of an analytical model of the chip formation process based on the combined effect of shear and bending stresses in the shear zone has been given. Application of the gained insight to the design of the cutting tool for maximum tool life by controlling of the chip-tool contact was suggested. Brief introduction to the study of cyclic events in chip formation and their relation to the tool life is presented.


2009 ◽  
Vol 407-408 ◽  
pp. 594-598
Author(s):  
Xiao Qin Wang ◽  
Xing Ai ◽  
Jun Zhao ◽  
Pei Quan Guo

Ti6Al4V is a difficult to machine alloy with low cutting efficiency and server tool wear. A series of orthogonal turning tests with CBN (Cubic Boron Nitride) in higher speed scale was carried out on a CA6140 lathe. The experiential functions of tool life based on orthogonal experiment were developed. The tool wear morphologies were examined by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS), adhesion, diffusion and micro-chipping were the major wear mechanisms of CBN tool. Finally, the cutting parameters of CBN tool in Ti6Al4V dry turning were optimized based on tool life-efficiency contour analysis, in same cutting efficiency, the higher cutting speed and small depth of cut are the better selection, it means that utilization of CBN tool enables the high cutting speed turning of Ti6Al4V.


Author(s):  
Ning Fang ◽  
Juhchin Yang ◽  
Nan Liu

High speed machining has received increasingly broad applications in various industries, especially in the aircraft and aerospace industry, where a large number of structural frames are machined. Based on Manyindo and Oxley’s descriptive model of serrated chip formation, this paper proposes a new mathematical model for high speed machining of 7075-T6 aluminum alloy. The new model integrates Johnson-Cook’s material model with Oxley’s machining theory and is validated by using the published experimental data. A good agreement between the predicted and experimental degree of chip segmentation is reached. The effects of cutting conditions and tool geometry on the serrated chip geometry, the cutting forces, and the shear-plane angles are quantitatively investigated. The analysis shows that a large undeformed chip thickness, a negative tool rake angle, and a high cutting speed strengthen the degree of chip segmentation in high speed machining.


Author(s):  
Mitsuru Hasegawa ◽  
Tatsuya Sugihara

Abstract In cutting of Ti-6Al-4V alloy, the cutting speed is limited since a high cutting temperature leads to severe tool wear and short tool life, resulting in poor production efficiency. On the other hand, some recent literature has reported that various beneficial effects can be provided by forming micro-textures on the tool surface in the metal cutting process. In this study, in order to achieve high-performance machining of Ti-6Al-4V, we first investigated the mechanism of the tool failure process for a cemented carbide cutting tool in high-speed turning of Ti-6Al-4V. Based on the results, cutting tools with micro textured surfaces were developed under the consideration of a cutting fluid action. A series of experiments showed that the textured rake face successfully decreases the cutting temperature, resulting in a significant suppression of both crater wear and flank wear. In addition, the temperature zone where the texture tool is effective in terms of the tool life in the Ti-6Al-4V cutting was discussed.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 464
Author(s):  
Alain Gil Del Val ◽  
Fernando Veiga ◽  
Octavio Pereira ◽  
Luis Norberto Lopez De Lacalle

Threading holes using tapping tools is a widely used machining operation in the industry. This manufacturing process involves a great tool immersion in the part, which involves both friction and cutting. This makes the use of coatings critical to improving tool life. Four coatings are used based on Physical vapor deposition (PVD) technology—TiN, TiCN, TiAlN and TiAlN+WC/C are compared to uncoated tool performance. The effect of various coatings on the life of M12 × 1.5 tapping tools during threading of through holes 20 mm deep, in GG25 casting plates, dry and applying cutting speed of 50 m/min. The end-of-life criterion has been established based on a cutting torque of 16 N-m. Taking the uncoated tap as a basis for comparison, it is observed that coatings based on PVD technologies increase tool life doubling in the most advantageous case with the TiAlN coating. PVD type coatings provide better protection to wear at cylindrical area of the tool, where the thread profile is finished, than uncoated taps. The teeth located in the cone-cylinder transition zone of the taps suffer the most wear regardless of the coating. However, taps coated with TiAlN+WC/C wear level values is lowest of all the coatings tested, which indicates a strong reinforcement in these teeth.


2019 ◽  
Vol 297 ◽  
pp. 09002
Author(s):  
Vyacheslav Shumyacher ◽  
Sergey Kryukov ◽  
Olga Kulik ◽  
Xavier Kennedy

The mechanism of chip formation process at grinding is described, which involves a high-speed interaction of abrasive grain and metal, which leads to a concentration of thermal energy in front of the dispersing element (grain), causing a locally concentrated shift in the metal microvolume. In “abrasive grain -metal” contact a dissipative structure is formed which existence is supported by exchange of energy and substance with environment. Due to shock compression of the metal microvolume with abrasive grain, shock-wave heating is realized, initiating emission of electrons ionizing the lubricating cooling fluid in the zone of formation of side micro-scratches left by abrasive. The results obtained in the course of the research can be used to explain the mechanisms of chip formation, as well as the course of the physical and mechanical processes occurring on the surface layers of the grinded workpieces. By controlling chip formation processes at high-speed grinding, by optimally selecting the appropriate ratios between cutting speed and other processing parameters, a reduction in process thermal density can be achieved, which, with the highest productivity, will allow to obtain the required quality of the surface layer of the workpieces and a given dimensional accuracy.


2014 ◽  
Vol 800-801 ◽  
pp. 290-295
Author(s):  
Chuang Liu ◽  
Shu Tao Huang ◽  
Ke Ru Jiao ◽  
Li Fu Xu

Application prospect of the high volume fraction SiCp/Al composites becomes increasingly widespread, the study of cutting mechanism is important for achieving its high efficient and precision machining. In this paper, a three-dimensional beveled simulation model of high volume fraction SiCp/Al composites on high-speed milling is established by finite element software ABAQUS, the constitutive on model material, the tool-chip contact and the chip separation model is elected reasonably.The paper analyzes the effect of cutting speed on the chip formation and the stress distribution of the material. The results shows that: with the increasing of cutting speed, the chip is easily broken, cutting speed have little impact on the maximum stress of the material.


2006 ◽  
Vol 7 (3) ◽  
pp. 50-58 ◽  
Author(s):  
Roberta Tarkany Basting ◽  
Juliane Ceolin Predebon ◽  
Flávia Martão Flório

Abstract Aim The aim of this study was to evaluate the use of CVDentUS tips for preparing cavities with ultrasound by dentists certified to use the Chemical Vapor Deposition (CVD) system. Methods and Materials One thousand sixty (1060) questionnaires were sent via e-mail inquiring about the use of the system with regard to the indication for use, need for anesthesia, final form of cavity preparation, and tip wear. Results Of the valid answers, 81.4% of the dentists used this system for tooth preparation in up to 60% of cases treated. For these procedures, 17.8% did not require use of local anesthesia while using the system. The final form of preparation compared to high speed diamond tips was considered to be more conservative by 48.3% of the certified professionals. With regard to wear, tip and/or adapter fractures, and low cutting speed, 44.4% of users reported problems. Discussion The CVD system seems to be used for tooth cavity preparation by the majority of the certified dentists. This is due to the resultant conservation of tooth structure despite the necessity of anesthesia and the limitations with regard to the lack of cutting efficiency of CVDentUS and tip wear. Clinical Significance The CVD system seems to present limitations with regard to cutting efficiency, wear, and the use of anesthesia in a majority of restorative procedures. Citation Predebon JC, Flório FM, Basting RT. Use of CVDentUS Diamond Tips for Ultrasound in Cavity Preparation. J Contemp Dent Pract 2006 July;(7)3:050-058.


2010 ◽  
Vol 139-141 ◽  
pp. 743-747
Author(s):  
Chun Zheng Duan ◽  
Hai Yang Yu ◽  
Min Jie Wang ◽  
Bing Yan ◽  
Yu Jun Cai

The development of chip morphology, critical cutting condition of adiabatic shear during serrated chip formation and cutting forces were observed and measured by high speed turning experiment for 30CrNi3MoV hardened steel. Results show that the cutting speed and rake angle are leading factors to influence chip morphology and cutting forces. With the increase of cutting speed, the continuous band chip transforms into serrated chip at a certain critical value. As the rake angle is changed from positive to negative, the critical cutting speed of adiabatic shear significantly decreases, the cutting forces abruptly reduces when the serrated chip forms. The results from predicting critical cutting speed using the critical cutting condition criterion of adiabatic shear in metal cutting process show that the leading reason of serrated chip formation is that the adiabatic shear fracture repeatedly occurs in the primary shear zone.


2010 ◽  
Vol 154-155 ◽  
pp. 239-245
Author(s):  
Chong Yang Gao ◽  
Bin Fang ◽  
Yuan Tong Gu

In this paper, two ideal formation models of serrated chips, the symmetric formation model and the unilateral right-angle formation model, have been established for the first time. Based on the ideal models and related adiabatic shear theory of serrated chip formation, the theoretical relationship among average tooth pitch, average tooth height and chip thickness are obtained. Further, the theoretical relation of the passivation coefficient of chip’s sawtooth and the chip thickness compression ratio is deduced as well. The comparison between these theoretical prediction curves and experimental data shows good agreement, which well validates the robustness of the ideal chip formation models and the correctness of the theoretical deducing analysis. The proposed ideal models may have provided a simple but effective theoretical basis for succeeding research on serrated chip morphology. Finally, the influences of most principal cutting factors on serrated chip formation are discussed on the basis of a series of finite element simulation results for practical advices of controlling serrated chips in engineering application.


Sign in / Sign up

Export Citation Format

Share Document