scholarly journals Titanium alloy design and casting process development using an Integrated Computational Materials Engineering (ICME) approach

2020 ◽  
Vol 321 ◽  
pp. 10013
Author(s):  
Zhi Liang ◽  
Jiashi Miao ◽  
Anil K. Sachdev ◽  
James C. Williams ◽  
Alan A. Luo

The application of titanium components is generally limited by their high raw material and manufacturing costs. In this paper, a lower cost cast titanium alloy based on the Ti-Al-Fe system has been designed using an ICME approach. The new alloy Ti-6Al-5Fe-0.05B-0.05C (all wt.%) significantly reduces raw material cost and demonstrates improved castability compared with the baseline Ti-6Al-4V alloy. The fine primary and secondary α phase microstructure in the new alloy, due to Fe partitioning, provides exceptionally high strength (1023 MPa yield strength and 1136 MPa ultimate tensile strength) and reasonable ductility (3.7% elongation) for structural applications. On the manufacturing front, the high cost multi-step investment casting process currently used can now be replaced with a low-cost permanent mold casting process using steel molds and a novel ceramic coating. An experimental casting setup, including an induction skull melting (ISM) system, a gravity tilt-pour system and a ceramic-coated H13 steel mold, has been used to produce near-net-shape permanent metallic mold castings with the new titanium alloy developed. Using this setup, and aided by casting process simulation, a prototype automotive connecting rod was cast successfully. The ZrO2 ceramic coating applied to the H13 steel mold was proven effective in minimizing the metal-mold reactions.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lokanadham Dharmana ◽  
Venkata Subbaiah Kambagowni

Purpose This study aims to develop the Al-Si-Mg metal matrix composite, reinforced distinctly with lime stone powder (LSP; 12% by weight) and Al2O3 (12% by weight), and compare their mechanical properties and tribological performance. Design/methodology/approach The composites are fabricated through stir casting process. In view of the previous work, the Al-LSP composite with LSP reinforcement (12 Wt.%) shows enhanced mechanical properties and tribological performance, as compared with other weight percentages. Findings Though the Al-LSP composite is less expensive, it shows similar hardness, tensile strength and specific strength, when compared with Al- Al2O3 composite. However, the Al-LSP composite exhibits significant enhancement of above three properties, when compared with Al-Si-Mg metal. The systematic factorial design of experiments is obtained through Taguchi OA [L9]. The tribological performance is estimated through wear rate (WR-mm3/m) and coefficient of friction (CF) by varying the operating parameters of sliding distance (SD), load (L) and sliding velocity (SV). According to ANOVA results, the optimal condition of WR for all the tested materials is L1SD3SV1. Further, the optimal condition of CF is L1SD1SV3 for Al-LSP and Al-Si-Mg metal, while L2SD3SV2 is for Al-Al2O3 composite. The regression equation predicts the measured experimental values within error band of ± 8 percentage. Originality/value A comparison of two composite materials (Al-LSP and Al-Al2O3) with same weight fractions (12%) shows almost same trend in both the mechanical and tribological testing process. However, the developed Al-LSP composite exhibited better properties than the Al-Al2O3 and Al-base. Therefore, Al-LSP can be suggested for automotive applications (i.e., connecting rod, cylinder liners, camshaft) and structural applications (such as frames, over hanging supports), without compromising in desirable original with properties of constituents in the new material, which is achievable for looking to the end uses.


2018 ◽  
Vol 157 ◽  
pp. 124-128 ◽  
Author(s):  
Zhi Liang ◽  
Jiashi Miao ◽  
Tyson Brown ◽  
Anil K. Sachdev ◽  
James C. Williams ◽  
...  

Author(s):  
Mahesh G ◽  
◽  
Valavan D ◽  
Baskar N ◽  
Jayasuthakar S.T. ◽  
...  

Sand casting is one of the best processes to produce a product to satisfy the customer requirements. The prime advantages of choosing the sand casting technique are perfect dimensional geometry, development of pattern is easy, production rate is high, and solidification time is low when compared to other casting techniques. The main purpose of sand casting is to produce a product with better quality in low cost. The properties of the green sand are based on the sand composition and the most important parameters in the preparation of moulding sand are green strength, moisture content and clay content. In this work, the silica oxide is blended in green sand with various compositions for cope box. The various compositions of sand parameters are experimentally investigated by using Response Surface Methodology (RSM). The results of sand parameters are compared with Artificial Neural Network (ANN) analysis. The blending of 9.2% SiO2 with green sand is very suitable for this casting process. The blending of 9.2% SiO2 with green sand is very suitable for this casting process. The effect of SiO2 blending with green sand, the initial raw material is reduced up to 25% of volume without casting defects. The hardness value increased up to 22% and the surface roughness decreased up to 12% by varying the percentage of SiO2 in green sand.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 140
Author(s):  
Lichen Liu ◽  
Ziping Cao ◽  
Min Chen ◽  
Jun Jiang

This paper reports the fabrication and characterization of (Bi0.48Sb1.52)Te3 thick films using a tape casting process on glass substrates. A slurry of thermoelectric (Bi0.48Sb1.52)Te3 was developed and cured thick films were annealed in a vacuum chamber at 500–600 °C. The microstructure of these films was analyzed, and the Seebeck coefficient and electric conductivity were tested. It was found that the subsequent annealing process must be carefully designed to achieve good thermoelectric properties of these samples. Conductive films were obtained after annealing and led to acceptable thermoelectric performance. While the properties of these initial materials are not at the level of bulk materials, this work demonstrates that the low-cost tape casting technology is promising for fabricating thermoelectric modules for energy conversion.


2019 ◽  
Vol 32 (1) ◽  
pp. 73-78
Author(s):  
P. Janaki ◽  
R. Sudha ◽  
T.S. Sribharathi ◽  
P. Anitha ◽  
K. Poornima ◽  
...  

The adsorption performance of sulphuric acid treated low cost adsorbent synthesized by using Citrus limettioides peel as an effective raw material for the removal of cadmium(II) from water. The batch adsorption method was carried out to optimize some parameters like contact time, pH and adsorbent dose. The nonlinear isotherm equations were used to calculate the different isotherm constant of five isotherm models namely Freundlich, Langmuir, Dubinin-Radushkevich, Redlich-Peterson and Sips. The Langmuir monolayer adsorption capacity of chemically modified Citrus limettioides peel was found to be 287.60 mg g-1. The negative values of ΔGº and ΔHº showed that the adsorption process is spontaneous and exothermic.


2000 ◽  
Vol 15 (1) ◽  
pp. 2-8 ◽  
Author(s):  
N.C. Wagner ◽  
S. Ramaswamy ◽  
U. Tschirner

AbstractA pre-economic feasibility study was undertaken to determine the potential of cereal straw for industrial utilization in Minnesota. Specifically, utilizing straw for pulp and paper manufacture was of interest. The availability of cereal straw fiber supplies at various locations across the state of Minnesota, along with pre-processing issues such as transportation, harvesting, handling, and storage, are discussed and priced. The greatest economic advantage of straw for industrial use appears to be the low cost of the raw material compared to traditional raw materials. This also provides an excellent opportunity for additional income for farmers. The methodology and information provided here should be helpful in evaluating the feasibility of utilizing straw for other industrial purposes in other parts of the world. However, in some Third World countries, long-standing on-farm, traditional uses of cereal straws for fuel, fiber, and animal feed may limit their availability for industrial utilization.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lokesh Kumar ◽  
Susanta Kumar Jana

Abstract Sulfur dioxide is considered as an extremely harmful and toxic substance among the air pollutants emitted from the lignite- and other high-sulfur-coal based power plants, old tires processing units, smelters, and many other process industries. Various types of absorbents and desulfurization technologies have been developed and adopted by the industries to reduce the emission rate of SO2 gas. The present paper focuses on the ongoing advances in the development of varieties of regenerative and non-regenerative absorbents viz., Ca-based, Mg-based, Fe-based, Na-based, N2-based, and others along with various FGD technology, viz., wet, dry or semi-dry processes. Additionally, different types of contactors viz., packed column, jet column, spray tower, and slurry bubble columns along with their significant operational and design features have also been discussed. In the existing or newly installed limestone-based FGD plants, an increasing trend of the utilization of newly developed technologies such as limestone forced oxidation (LSFO) and magnesium-enhanced lime (MEL) are being used at an increasing rate. However, the development of low-cost sorbents, particularly suitable solid wastes, for the abatement of SO2 emission needs to be explored sincerely. Many such wastes cause air pollution by way of entrainment of fine particulate matter (PM), groundwater contamination by its leaching, or brings damage to crops due to its spreading onto the cultivation land. One such pollutant is marble waste and in this work, this has been suggested as a suitable substitute to limestone and cost-effective sorbent for the desulfurization of flue gases. The product of this process being sellable in the market or may be used as a raw material in several industries, it can also prove to be an important route of recycling and reuse of one of the air and water-polluting solid wastes.


2016 ◽  
Vol 67 ◽  
pp. 05025
Author(s):  
Qiuyuan Feng ◽  
Lei Zhang ◽  
Hong Pang ◽  
PingHui Zhang ◽  
Xuewen Tong ◽  
...  

1997 ◽  
Vol 471 ◽  
Author(s):  
D. Endisch ◽  
K. Barth ◽  
J. Lau ◽  
G. Peterson ◽  
A. E. Kaloyeros ◽  
...  

ABSTRACTSrS:Ce is an important material for full color electroluminescent (EL) flat panel displays. Using a combination of SrS:Ce/ZnS:Mn and appropriate color filters high quality full color displays have been demonstrated [1]. Major issues for commercially viable process integration of SrS:Ce are the combination of high luminance, high growth rate, and process temperatures below 600°C for compatibility with low cost glass substrates. This work describes the process development and optimization of metal-organic chemical vapor deposition (MOCVD) of SrS:Ce. MOCVD is a promising candidate for deposition of SrS:Ce because it can provide the required growth rates and allows control of crystal structure and stoichiometry. Growth of SrS:Ce was performed in the temperature range from 400°C to 530°C using Sr(tmhd)2, Ce(tmhd)4, and H2S as precursors. The structure of the SrS:Ce was found to be strongly dependent on the H2S flow. A brightness of 15 fL and an efficiency of 0.22 lm/W has been achieved (40 V above threshold voltage, 60 Hz AC). Film analysis included Rutherford backscattering (RBS), X-ray diffraction (XRD), atomic force microscopy (AFM), and EL measurements. Results on the correlation between process parameters, film structure, grain size and EL performance will be presented.


Sign in / Sign up

Export Citation Format

Share Document