scholarly journals Modern Technologies for Micro-drilling of the Fuel Injector Nozzle used in Motor Vehicles - A Review of the Literature

2021 ◽  
Vol 343 ◽  
pp. 03007
Author(s):  
Dorinel Popa ◽  
Cristin-Olimpiu Morariu

To cope with the pollution norms and an improvement of the combustion of the internal combustion engines, high-quality holes with diameters smaller than 145 µm are needed for the manufacture of fuel injection nozzles. The current practice of using drilling by electro-discharge machining of fuel injection nozzles is limited in terms of the size of the hole it can efficiently produce and the time required for drilling. In addition, the cost of the tool is high. This paper presents an investigation into a sequential laser and electro-discharge micro-drilling technique for the manufacture of fuel injection nozzles. A pilot hole drilled with a laser is removed by electrodischarge. It was found that this hybrid process eliminated the problems of reformed and heat-affected areas usually associated with the laser drilling process. The new process has allowed a reduction in total drilling time compared to standard electro-discharge machining drilling, as less material is removed from the electro-discharge machining. The quality of the holes is as good as direct electro-discharge machining drilling. This technique has allowed valuable cost savings and increased production capacity for the manufacture of the fuel injector nozzle.

2017 ◽  
Vol 170 (3) ◽  
pp. 147-153
Author(s):  
Rafał SOCHACZEWSKI ◽  
Zbigniew CZYŻ ◽  
Ksenia SIADKOWSKA

This paper discusses the modeling of a fuel injector to be applied in a two-stroke diesel engine. A one-dimensional model of a diesel injector was modeled in the AVL Hydsim. The research assumption is that the combustion chamber will be supplied with one or two spray injectors with a defined number of nozzle holes. The diameter of the nozzle holes was calculated for the defined options to provide a correct fuel amount for idling and the maximum load. There was examined the fuel mass per injection and efficient flow area. The studies enabled us to optimize the injector nozzle, given the option of fuel injection into the combustion chamber to be followed.


2021 ◽  
Vol 15 (2) ◽  
pp. 8153-8168
Author(s):  
Saeed Chamehsara ◽  
Mohammadreza Karami

In order to repair internal combustion engines, sometimes it is necessary to replace the components of these engines with each other. Therefore changes in engine performance are inevitable in these conditions. In the present study, by changing the coneccting rod and the crank of the OM457 turbo diesel-fueled engine with the OM444, it was observed that the performance of the engine decreases. Numerical simulations have been carried out to study the Possible ways to mitigate this reduction. One way to achieve this goal is to change the fuel injector’s characteristics such as, fuel injector’s nozzle hole diameter, number of nozzle holes, and start time of fuel injection. In this study, the impact of these parameters on the performance and emissions of these engines were analyzed. Another scenario is an increase in inlet fuel and air by the same amount. The results indicate that By reducing the diameter of fuel injector holes and hole numbers, the performance of the engine was increased. on the other hand, the NOx emissions were increased while the amount of soot emission decreased. The same results were concluded by retarding the start time of injection. Subsequently, a case study of changing fuel injector parameters for mitigation of decreased performance was performed. These parameters were simultaneously applied, and results were compared. The performance of the engine with improved injector’s characteristics was close to the main OM457. Similar results were obtained by increasing the amount of inlet air and fuel.


2012 ◽  
Vol 248 ◽  
pp. 173-178
Author(s):  
Adedamola Najeem Peleowo

The main function of a fuel injector nozzle is to break fuels into droplets, form the spray pattern, and propel the droplets into a combustion chamber. The amount of spray volume at a given operating pressure, the travel speed, and spacing between the jets of fuel can also be determined by the nozzle. In fuel injection, the smallest possible droplet size is desired for the most flow. This work presents an opportunity to use the Schlieren arrangement as a visualization method to view the flow of fuel from a three-hole fuel injector nozzle which cannot be seen by the naked eye. The jet flow of diesel Fuel was investigated by Schlieren photography. A test rig was designed and constructed to accommodate the nozzle; optical mirrors were arranged according to Schlieren specifications in order to allow the jet to be photographed. The breakaway pressure of the nozzle was varied between 60bar to 80bar. Each hole of the nozzle is 0.26mm in diameter and 120° apart; the third jet could not be seen from the images because the camera took x-y dimension images. The spray pattern observed from the two dimensional images of the jets developed were seen to be well dispersed. Su et al [3] found that emissions could be reduced in diesel engines if the injector nozzle produces smaller and more dispersed droplets.


2019 ◽  
Vol 57 (1) ◽  
pp. 23-45
Author(s):  
Lino Kocijel ◽  
Vedran Mrzljak ◽  
Maida Čohodar Husić ◽  
Ahmet Čekić

This paper investigates the influence of the fuel injector nozzle geometry on the liquid fuel contraction coefficient and Reynolds number. The main three fuel injector nozzle geometry parameters: nozzle diameter (d), nozzle length (l) and nozzle inlet radius (r) have a strong influence on the liquid fuel contraction coefficient and Reynolds number. The variation of the nozzle geometry variables at different liquid fuel pressures, temperatures and injection rates was analyzed. The liquid fuel contraction coefficient and Reynolds number increase with an increase in the nozzle diameter, regardless of the fuel injection rate. An increase in the r/d ratio causes an increase in the fuel contraction coefficient, but the increase is not significant after r/d = 0.1. A nozzle length increase causes a decrease in the fuel contraction coefficient. Increase in the nozzle length of 0.5 mm causes an approximately similar decrease in the contraction coefficient at any fuel pressure and any nozzle length. Fuel injectors should operate with minimal possible nozzle lengths in order to obtain higher fuel contraction coefficients.


2020 ◽  
Author(s):  
Zbigniew Stępień

The undesirable deposits forming on the surfaces of various internal parts of reciprocating internal combustion engines and the systems operating in conjunction with them worsen during the operation of the engines and threaten their proper functioning. The deposits form as a normal result of the processes of fuel injection and creating and combusting the fuel–air mixture in engines. It was not investigated until the beginning of the 21st century, when extensive multi-directional research began not only to identify the causes of these deposits, the mechanisms behind their formation, and the factors leading to deposit growth, but also to determine the chemical composition of various groups of deposits. Such research became necessary because engines must comply with gradually tightening regulations on environmental protection, necessitating the introduction of increasingly complex engine designs and strategies for controlling the processes of precise and divided fuel injection into the combustion chambers and advanced algorithms for controlling the combustion processes according to the combustion system and the purpose of the engine. However, it became apparent that the co-functioning of the increasingly complex engine technologies and solutions, particularly of fuel injection systems, may be significantly disturbed by the deposits forming inside them. More and more complicated engine designs with tighter and tighter tolerances of the working parts necessitate the multi-directional testing of harmful deposits. An increasing number of factors affecting deposit formation are being identified, which leads to the development of increasingly complex classifications and subdivisions of deposits according to their type, composition, and form. At the same time, the search for lower emissions and greater engine efficiency is driving further mechanical changes in engines and vehicles. The higher temperatures and pressures connected with these changes are likely to impact the fuel being handled within the fuel and combustion systems. Such effects will inevitably cause the deposit chemistry and morphology to change. The size of the coke deposits produced may disturb the processes of fuel atomization, of filling the engine combustion chambers and swirling the charge, and in consequence may affect the efficiency of filling and the quality of the fuel–air mixture. These problems led to the development of a number of standardized and unstandardized methods for assessing the size of deposits. It was found that in the case of SI engines, the deposits that most endanger correct engine operation are those which are formed in the combustion chambers, on the inlet valves, inlet ducts, and fuel injector tips. The most common sign of deterioration caused by deposits is the loss over time of the performance, usability, and operational value which were originally declared by the manufacturer. In the case of CI engines, the most dangerous are coke (carbon) deposits formed on the external surfaces of the fuel injector nozzle tips and inside the injector nozzle orifices. In Europe, mandatory procedures for assessing the size of different coke deposits formed on different components in both SI and CI engines are being developed by the Coordinating European Council for the Development of Performance Tests for Transportation Fuels, Lubricants, and Other Fluids (CEC). The theoretical part of this publication reports the problems of the deposits produced in reciprocating internal combustion engines and their fuel systems. It discusses standard and non-standard engine test methods for both quantitative and qualitative assessment of deposits and presents the significance of the assessment methods which are currently used for the classification of deposits. The publication also presents the scope of application and the usefulness of methods for determining the threats posed to the functioning of an engine by various types of deposits and methods for identifying the causes of deposit formation, in particular those related to the composition of the fuels and lubricating oils used. The effects which fuel composition and the engine’s construction and operating parameters have on various engine deposits, the possible causes of deposit formation, and the importance of modern deposit control additives and high-technology solutions in counteracting this detrimental phenomenon are also all discussed. The experimental part presents the results of research carried out at the Oil and Gas Institute – National Research Institute concerning: • the incomparability of measurements of fuel performance obtained from various engine tests, • studies on the influence of various deposit control additives on the formation of harmful engine deposits during engine tests, • the influence of fuel treatments on the deposit formation processes in internal combustion engines (described qualitatively or quantitatively), • determination of the impact which various chemical compounds, serving as contaminants within the fuels, have on deposit formation in internal combustion engines and fuel injection systems, • determination of the impact that various chemical structures of the compounds within the fuels and biofuel blends have on deposit formation in internal combustion engines and fuel injection systems, • studies on the influence of bio-components contained in both petrol and diesel fuels on tendency for deposits to form in internal combustion engines, and • multidirectional studies on the impact of FAME degradation processes in biodiesel fuel blends on the formation of harmful engine deposits.


2020 ◽  
Vol 10 (12) ◽  
pp. 4410 ◽  
Author(s):  
Noritsune Kawaharada ◽  
Lennart Thimm ◽  
Toni Dageförde ◽  
Karsten Gröger ◽  
Hauke Hansen ◽  
...  

High pressure injection systems have essential roles in realizing highly controllable fuel injections in internal combustion engines. The primary atomization processes in the near field of the spray, and even inside the injector, determine the subsequent spray development with a considerable impact on the combustion and pollutant formation. Therefore, the processes should be understood as much as possible; for instance, to develop mathematical and numerical models. However, the experimental difficulties are extremely high, especially near the injector nozzle or inside the nozzle, due to the very small geometrical scales, the highly concentrated optical dense spray processes and the high speed and drastic transient nature of the spray. In this study, several unique and partly recently developed techniques are applied for detailed measurements on the flow inside the nozzle and the spray development very near the nozzle. As far as possible, the same three-hole injector for high pressure diesel injection is used to utilize and compare different measurement approaches. In a comprehensive section, the approach is taken to discuss the measurement results in comparison. It is possible to combine the observations within and outside the injector and to discuss the entire spray development processes for high pressure diesel sprays. This allows one to confirm theories and to provide detailed and, in parts, even quantitative data for the validation of numerical models.


2018 ◽  
Vol 108 (01-02) ◽  
pp. 76-80
Author(s):  
S. Michel ◽  
D. Prof. Biermann

Tiefbohrungen erfordern bei anspruchsvollen Anbohrsituationen speziell angepasste Bohrbuchsen oder eine mehrstufige Prozesskette aus Planfräsen, Pilotbohren und Tiefbohren. Mit einem hybriden Maschinenkonzept, bestehend aus einem Laser und einer konventionellen Tiefbohreinheit, lässt sich die Prozesskette deutlich verkürzen. Im Rahmen dieses Artikels wird der Laserpilotbohrprozess für den Edelstahl 1.4404 untersucht und die Verfahrenskombination bei mehreren Anbohrsituationen umgesetzt.   Deep hole drilling requires special drill bushes or a multi-stage process chain of face milling, pilot hole drilling and deep hole drilling for demanding surface geometries. With a hybrid machine concept, consisting of a laser and a conventional deep hole drilling unit, the process chain can be significantly shortened. Within the scope of this article, the laser pilot hole drilling process for AISI 316L is investigated and the process combination for several surface geometries is implemented.


Author(s):  
Dan Chown ◽  
Charles Habbaky ◽  
James S. Wallace

Natural gas requires some form of ignition assist in order to autoignite in the time available in a compression ignition engine. Ignition assist using a glow plug — a heated surface — was investigated using an apparatus that consists of an optically accessible constant volume combustion bomb coupled to a single cylinder CFR engine through the spark plug port. Previous studies have shown the dominant effect of fuel injection pattern and glow plug shield geometry on ignition delay, combustion rate, and fuel utilization with 1–3 fuel jets. New work has been carried out to evaluate the ability of a shielded glow plug to ignite a full nine jet symmetrical fuel injection pattern. The sensitivity of ignition delay and fuel utilization to fuel injector angular alignment relative to the glow plug, glow plug shield opening angle, and glow plug power was analyzed using in-cylinder pressure data and exhaust hydrocarbon emissions concentrations. Two glow plugs, one conventional metallic and one ceramic, and two fuel injector nozzle orifice sizes were evaluated for their effect on ignition delay. The ignition and flame propagation process was observed using high speed images. Glow plug power was shown to have a dominant effect on ignition delay and fuel utilization, with a secondary effect from fuel injector angle and glow plug opening angle. The ceramic glow plug was shown to provide superior ignition assist while consuming less power than the metallic glow plug. The larger fuel injector nozzle size increased ignition delay times, likely due to increased convective cooling of the glow plug surface from the larger gas jet. Acquired images show that the smaller fuel injector orifice size created a flammable path in two distinct areas; along the periphery of the fuel jets and between the fuel jets. The higher mass flow rate and subsequent increased mixing of the larger fuel jets created flammable paths throughout the entirety of the combustion chamber.


Actuators ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 237
Author(s):  
Luigi Allocca ◽  
Daniele Davino ◽  
Alessandro Montanaro ◽  
Ciro Visone

One of the goals of modern internal combustion engines is the NOx-soot trade-off, and this would be better achieved by a better control of the fuel injection. Moreover, this feature can be also useful for high-performance hydraulic systems. Actual fuel injection technology either allows only the control of the injection time or it is based on very complex mechanical-hydraulic systems, as in the case of piezo-actuators. This work describes the basic steps that brought the authors to the realization of a concept fuel injector based on a Terfenol-D magnetostrictive actuator that could overcome the previous issues, being both simple and controllable. The study provides the design, development, and a feasibility analysis of a magnetostrictive actuator for fuel injection, by providing a basic magneto-static analysis of the actuator, the adaptation of a suitable standard fuel injector, and its experimental testing in a lab environment, with different shapes and amplitude of the reference signal to follow.


Author(s):  
Gerald J. Micklow ◽  
Insoo Cho

In gas turbine combustors, enhanced atomization through the whole combustor region is essential for satisfactory performance since droplet size and distribution can have direct impact on almost all key aspects of combustion. To predict these flows, KIVA-II, a three-dimensional full Reynolds-averaged Navier-Stokes solver with the capability to handle finite rate chemistry and liquid spray injection is utilized. The Monte-Carlo based spray model in KIVA-II was developed to predict the flows in internal combustion engines and includes submodels for drop injection, breakup, coalescence, and evaporation. To assess the validity of the spray model for gas turbine combustors, numerical flow field predictions have been compared with experimental data provided by University of California, Irvine (UCI) Combustion Laboratory. The predicted spray behavior is in satisfactory agreement between the numerical prediction and the experiment downstream near the fuel injector. However, far downstream of the nozzle exit the deviation between the numerical results and the experimental data increases.


Sign in / Sign up

Export Citation Format

Share Document