scholarly journals Research on the negative effects of the “Valea Arsului” tailings dumps on the environment

2022 ◽  
Vol 354 ◽  
pp. 00072
Author(s):  
Alexandra (Soica) Stanimirescu ◽  
Angela Egri ◽  
Mirela Ancuta Radu ◽  
Florin Flavius Soica

As a result of the exploitation of coal in the mines from the Jiu Valley, significant quantities of tailings result from the mining works, but also from the coal preparation processes. They are stored in piles of different sizes, placed on the ground horizontally or between mountains, piles called tailings dumps. For the construction of tailings dumps the first requirement was the removal of the vegetal layer from the soil surface, a requirement that was often not observed so that the environment was affected. This paper aims to show how the environment around the Vulcan coal mine was affected in 2020..

2002 ◽  
Vol 32 (2) ◽  
pp. 233-246 ◽  
Author(s):  
Ronald Heninger ◽  
William Scott ◽  
Alex Dobkowski ◽  
Richard Miller ◽  
Harry Anderson ◽  
...  

We (i) quantified effects of skidder yarding on soil properties and seedling growth in a portion of western Oregon, (ii) determined if tilling skid trails improved tree growth, and (iii) compared results with those from an earlier investigation in coastal Washington. Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were hand planted at eight recent clearcuts in skid ruts in either nontilled or tilled trails, in adjacent soil berms, and in adjacent logged-only portions. Four and 5 years after skidding, rut depths averaged 15 cm below the original soil surface; mean fine-soil bulk density (0–30 cm depth) below ruts of nontilled trails exceeded that on logged-only portions by 14%. Height growth on nontilled trails averaged 24% less than on logged-only portions in year 4 after planting and decreased to 6% less in year 7. For years 8–10, mean height growth was similar for all treatments. Reduced height growth lasted for about 7 years compared with 2 years for coastal Washington. Ten years after planting, trees in skid-trail ruts averaged 10% shorter with 29% less volume than those on logged-only portions. Tillage improved height and volume growth to equal that on logged-only portions. Generalizations about negative effects of skid trails on tree growth have limited geographic scope.


Weed Science ◽  
2018 ◽  
Vol 66 (6) ◽  
pp. 752-757 ◽  
Author(s):  
Gulshan Mahajan ◽  
Amar Matloob ◽  
Michael Walsh ◽  
Bhagirath S. Chauhan

AbstractAfrican turnipweed (Sisymbrium thellungiiO. E.Schulz) is an emerging problematic broadleaf weed of the northern grain region of Australia. Laboratory experiments were conducted to evaluate the effects of temperature, light, salinity, pH, seed burial depth, and the amount of wheat crop residue on germination and emergence of two AustralianS. thellungiiweed populations (population C, cropped area; population F, fence line). Both populations behaved similarly across different environmental conditions, except in the residue study. Although the seeds of both populations ofS. thellungiicould germinate under complete darkness, germination was best (~95%) under light/dark conditions at the 20/10 C temperature regime. Both populations ofS. thellungiigerminated over a wide range of day/night temperatures (15/5, 20/10, 25/15, and 30/20 C). Osmotic stress had negative effects on germination, with 54% seeds (averaged over populations) able to germinate at −0.1MPa. Complete germination inhibition for both populations was observed at −0.8MPa osmotic potential. Both populations germinated at sodium chloride (NaCl) concentrations ranging from 50 to 100 mM, beyond which germination was completely inhibited. There were substantial reductions in seed germination, 32% (averaged over populations) under highly acidic conditions (pH 4.0) as compared with the control (water: pH 6.4). Seed germination of both populations on the soil surface was 77%, and no seedlings emerged from a burial depth of 1 cm. The addition of 6 Mg ha−1of wheat (Triticum aestivumL.) residue reduced the emergence of the C and F populations ofS. thellungiiby 75% and 64%, respectively, as compared with the control (no residue). Information gathered from this study provides a better understanding of the factors favorable for germination and emergence ofS. thellungii, which will aid in developing management strategies in winter crops, especially wheat, barley (Hordeum vulgareL.), and chick pea (Cicer arietinumL.).


2021 ◽  
Vol 244 ◽  
pp. 01015
Author(s):  
Sergey Soloviev ◽  
Irina Semina ◽  
Vladimir Androkhanov ◽  
Asya Shipilova

The paper presents the results of research and assessment of the degree of restoration of vegetation cover in reclaimed areas with the use of coal preparation waste in Kuzbass. Reclamation of disturbed lands was carried out by backfilling the depleted pits of the former coal mine with coal preparation waste and forming a root layer on the leveled surface of the waste using materials of the fertile soil layer (FSL) and potentially fertile rocks (PFR). During the field survey of reclamation sites, it was found that when sowing perennial grasses (Bromopsis inermis, Medicago sativa, etc.) or planting trees and shrubs (Hippophae rhamnoides, Pinus sylvestris, etc.) on the root layer formed of FSL and/or PFR, favorable conditions are created in the reclaimed areas for the formation of the primary phytocenosis. Studies have also shown that in reclaimed areas where a fertile soil layer was used to form a root layer, a gradual restoration of soil properties is recorded in the surface fill layers, which in some parameters are close to natural soils common in the adjacent territories.


2019 ◽  
Vol 33 (03) ◽  
pp. 475-480
Author(s):  
Ryan B. Aldridge ◽  
Katherine M. Jennings ◽  
Sushila Chaudhari ◽  
David W. Monks ◽  
Wesley J. Everman ◽  
...  

AbstractGreenhouse and field studies were conducted to determine tolerance of blueberry to saflufenacil. Greenhouse studies included five saflufenacil rates (0, 50, 100, 200, and 400 g ai ha−1) and three southern highbush blueberry cultivars (‘Legacy’, ‘New Hanover’, and ‘O’Neal’) and one rabbiteye blueberry cultivar (‘Columbus’). Saflufenacil treatments were soil applied into each pot when blueberry plants were approximately 30-cm tall. Visible injury (purpling/reddening of foliage and leaf abscission) ranged from 3% to 12%, 3% to 42%, 0% to 43%, and 0% to 29% with saflufenacil from 50 to 400 g ha−1 in Columbus, Legacy, New Hanover, and O’Neal, respectively, at 28 d after treatment. Regardless of injury, plant growth (change in height), soil plant analysis development, and whole-plant dry biomass of all cultivars did not differ among saflufenacil rates. Field studies were conducted in Burgaw, NC, to determine the tolerance of nonbearing (<3-yr-old and not mature enough to produce fruit) and bearing (>3-yr-old and mature enough to produce fruit) southern highbush blueberry (‘Duke’) to saflufenacil application at pre-budbreak or during the vegetative growth stage. Treatments included three rates of saflufenacil (50, 100, and 200 g ha−1), glyphosate (870 g ae ha−1), glufosinate (1096 g ai ha−1), glyphosate (870 g ha−1) + saflufenacil (50 g ha−1), glufosinate (1096 g ha−1) + saflufenacil (50 g ha−1), and hexazinone (1,120 g ai ha−1), applied POST-directed to the soil surface beneath blueberry plants in a 76-cm band on both sides of the blueberry planting row. The maximum injury from treatments containing saflufenacil was ≤11% in both nonbearing and bearing blueberry. No negative effects on plant growth or fruit yield were observed from any treatments. Results from both greenhouse and field studies suggest that saflufenacil applied at 50 (1X commercial use rate) and 100 g ha−1 is safe to use in blueberry.


2018 ◽  
Vol 15 (4) ◽  
pp. 1161-1172 ◽  
Author(s):  
Rongliang Jia ◽  
Yun Zhao ◽  
Yanhong Gao ◽  
Rong Hui ◽  
Haotian Yang ◽  
...  

Abstract. Biocrust moss is an essential soil surface bio-cover. It can represent the latest succession stage among the diverse range of surface-dwelling cryptogams (e.g., cyanobacteria, green algae, and lichen, which are also referred to as biocrusts), and it can make a major contribution to soil stability and fertility in many arid sandy desert ecosystems. The soil surface represents a very large ecological niche that is poikilohydric in nature. Biocrust moss is therefore highly susceptible to drought and sand burial, which are two ubiquitous stressors in arid sandy deserts. However, little information is available regarding the mechanism by which biocrust moss can survive and flourish in these habitats when stressed simultaneously by the two stressors. The combined effects of drought and sand burial were evaluated in a field experiment using the predominant biocrust moss, Bryum argenteum Hedw., in the Tengger Desert, China. Drought was simulated by applying distilled water in three artificial rainfall regimes at 8-day intervals in spring and autumn: 4 and 6 mm (average rainfall, control), 2 and 3 mm (double drought), and 1 and 1.5 mm (4-fold drought), respectively. The effect of sand burial was determined by applying six treatments, i.e., sand depths of 0 (control), 0.5, 1, 2, 4, and 10 mm. The four parameters of chlorophyll a content, PSII photochemical efficiency, regeneration potential, and shoot upgrowth were evaluated in the moss. It was found that the combined effects of drought and sand burial did not exacerbate the single negative effects of the four parameters tested. Drought significantly ameliorated the negative effects of deep-sand burial on the retention of chlorophyll a content, PSII photochemical efficiency, and the regeneration potential of B. argenteum. Sand burial diminished and even reversed the negative effects of drought on the maintenance of chlorophyll a content, PSII photochemical efficiency, and regeneration potential. Although drought and sand burial imposed an additive negative effect on shoot upgrowth, which suggested a trade-off between growth ability and stress tolerance, their mutually antagonistic effect on the physiological vigor of B. argenteum provided an opportunity for the biocrust moss to overcome the two co-occurring stressors. In addition to providing a strong stress tolerance, drought and sand burial may provide an important mechanism for the biodiversity maintenance of biocrust mosses in arid sandy ecosystems.


2014 ◽  
Vol 74 (3 suppl 1) ◽  
pp. S064-S069 ◽  
Author(s):  
AB Gatti ◽  
LK Takao ◽  
VC Pereira ◽  
AG Ferreira ◽  
MIS Lima ◽  
...  

The Brazilian cerrado presents strong climate seasonality. During the dry season, plants may be exposed to stressful situations, such as a soil surface water deficit, that stimulate their chemical defenses. However, the seasonality effect on the production of allelopathic compounds of cerrado plant species is poorly understood. In this study, the phytotoxic activities of common native cerrado plants were evaluated during rainy and dry seasons. Crude leaves extracts (10% concentration: weight/volume, with dry leaves and distilled water) from eleven species were tested on lettuce and sesame germination. The negative effects on germination percentages, rates and informational entropies of the target species were higher when submitted to plant extracts from the dry season, where the germination rate was the most sensible parameter. The higher sensibility of lettuce and the germination rate parameter showed this difference. Only two exceptions had higher effects for rainy season extracts; one species showed higher negative effects on germination informational entropy of lettuce and another species on the germination rate of sesame. Thus, increases in the allelopathic activity were seen in the majority of the studied cerrado plant species during the dry season. These distinct responses to stressful situations in a complex environment such as the Brazilian cerrado may support the establishment and survival of some species.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 992
Author(s):  
Junfang Niu ◽  
Junxia Feng ◽  
Xiying Zhang ◽  
Suying Chen ◽  
Liwei Shao

Climate changes show asymmetrical warming, and warming is typically greater at night than during the day. To understand how nocturnal warming (NW) affects the performance of maize (Zea mays L.), an open-field experiment with a free air temperature increase (FATI) facility was conducted for three seasons during 2014 to 2016 at Luancheng eco-agro-experimental station on the North China Plain (NCP). Three nocturnal warming scenarios were set up: the entire growing period (T1, from V4 to maturity), only the vegetative stages (T2, from V4 to a week presilking) and the reproductive stages (T3, from a week presilking to R6). The treatment without NW was the control. Maize lodged seriously in 2015 due to heavy rainfall combined with strong winds, and the experiment failed. The results from 2014 and 2016 were analyzed in this study. During the experimental duration, the average nocturnal temperature was increased by approximately 3.6 and 3.3 °C at 150 cm height and 2.0 and 1.7 °C at the soil surface during the vegetative stages. The corresponding increases were 2.1 and 2.5 °C and 0.7 and 1.2 °C at the soil surface during the reproductive stages in 2014 and 2016, respectively, as compared with that of the CK treatment. NW during the whole growth period significantly decreased maize yield for the two seasons. Treatment T2 had a smaller impact on maize yield than T1 and T3. The silking stage was delayed by 2 days in 2014 and 2016 under T1. As a result, presilking duration and VT-R1 interval were prolonged by 1–2 days; and the postsilking duration were shortened by 1–3 days under T1. The soil moisture in the warmed plots was slightly lower than that in the control plots in the 2014 and during the stages before the earlier grain-filling stages in 2016, but NW decreased soil water content greatly at the later grain-filling stages in 2016, which caused the fast green leaf senescence and exacerbated the negative effects of NW on maize yield. NW for the whole growth duration (T1) significantly decreased seed weight and harvest index. NW increased leaf nighttime respiration rate in both seasons. No significant effects of NW on ear leaf net photosynthesis, leaf area, and specific leaf weight at early grain-filling stage were observed, irrespective of the warming stage and season. The results suggested that reproductive stages were more sensitive to NW compared to vegetative stages under the growing conditions of NCP. The negative effects of NW were worsened in dry seasons. The reduction in maize yield with nocturnal warming was driven by the reduction in the aboveground carbon allocation from shoot to grain during postanthesis stage.


2021 ◽  
Vol 330 ◽  
pp. 04011
Author(s):  
Irina Semina ◽  
Vladimir Androkhanov ◽  
Sergey Solovyev

The paper presents the results of research and assessment of the revegetation degree in reclaimed areas using coal preparation waste in the Kemerovo region – Kuzbass. Reclamation of disturbed lands was carried out by backfilling the worked-out pits of the former coal mine with coal preparation waste and forming a root layer on the leveled surface of the waste using materials of the fertile soil layer (FSL) and potentially fertile rocks (PFR). During the field survey of reclamation sites, it was found that when sowing perennial grasses (Bromopsis inermis, Medicago sativa, etc.) or planting trees and shrubs (Hippophae rhamnoides, Pinus sylvestris, etc.) on the formed root layer from the PFR and / or FSL, favorable conditions are created for the formation of the primary phytocenosis in the reclaimed areas. The studies also showed that in reclaimed areas using a fertile soil layer for the formation of a root layer, a gradual restoration of soil properties is recorded in the surface covered layers, which in some parameters are close to natural soils common in the adjacent territories.


2006 ◽  
Vol 36 (10) ◽  
pp. 2654-2665 ◽  
Author(s):  
Zoubeir Béjaoui ◽  
Ali Albouchi ◽  
Mejda Abassi ◽  
Mohamed Hédi El Aouni

Seedlings of three poplar clones (I-488, Rimini, and D-64) grown in plastic pots were submitted to three water regimes: (1) irrigated and well-drained control (T); (2) flooded with running water (Hr = 6 mg·L–1 of O2); and (3) flooded with stagnant water (Hs = 2 mg·L–1 of O2). A permanent water table was maintained at 5 cm above the soil surface for 2 months. The Hr and Hs treatments simulate the conditions of hydromorphic soils chosen for planting poplar in Tunisia where the attempts failed because of the lack of knowledge relating to the degree of tolerance of this species to waterlogging. Waterlogging significantly reduced growth (leaf initiation was inhibited, root decay and early leaf abscission occurred) and modified photosynthetic activity (stomatal closure and reduction of CO2 net assimilation rates). Intracellular CO2 values did not significantly differ between treatments (T, Hr, and Hs), indicating that both stomatal and nonstomatal limitations could be responsible for reducing CO2 net assimilation. However, the degree of disruption varied according to the treatment. Stagnant regime Hs had negative and irreversible effects on CO2 net assimilation rates and internal CO2 conductance for the full length of the treatments with stomatal closure after 40 days in Rimini and D-64 clones. The Hr treatment produced limited reactions; the development of hypertrophied lenticels and adventitious roots alleviated the negative effects of waterlogging with a distinct recuperation of net photosynthesis and CO2 internal conductance particularly for clone I-488. In the same way, the development of root adaptations was greater for I-488 than Rimini and D-64 clones, probably indicating a higher tolerance to flooding in the former clone. This approach could be used to select the clones intended for afforestation of the nonsaline hydromorphic areas.


Sign in / Sign up

Export Citation Format

Share Document