scholarly journals Cooperative estimation algorithms for multi-sensor networks with imprecise measurements

2022 ◽  
Vol 355 ◽  
pp. 03006
Author(s):  
Jianxin Chen ◽  
Xinzhuo Ren ◽  
Yinfei Xu ◽  
Haojie Meng ◽  
Zhenfan Zhao ◽  
...  

A cooperative estimation algorithm is proposed for mutli-sensor networks with imprecise measurements caused by electromagnetic interferences, abnormal currents and other faults in the multi-sensor measurement process. Adaptive schemes based on a reference model are introduced to overcome the adverse effects of multiplicative interference on the estimated information. Then, rigorous theoretical proofs are developed to analyze the adaptive estimation algorithm. Finally, numerical simulation results are carried out to verify the effectiveness of the theoretical analysis.

2019 ◽  
Author(s):  
Abhishek Verma ◽  
Virender Ranga

Relay node placement in wireless sensor networks for constrained environment is a critical task due to various unavoidable constraints. One of the most important constraints is unpredictable obstacles. Handling obstacles during relay node placement is complicated because of complexity involved to estimate the shape and size of obstacles. This paper presents an Obstacle-resistant relay node placement strategy (ORRNP). The proposed solution not only handles the obstacles but also estimates best locations for relay node placement in the network. It also does not involve any additional hardware (mobile robots) to estimate node locations thus can significantly reduce the deployment costs. Simulation results show the effectiveness of our proposed approach.


2015 ◽  
Vol 23 (04) ◽  
pp. 1540007 ◽  
Author(s):  
Guolong Liang ◽  
Wenbin Zhao ◽  
Zhan Fan

Direction of arrival (DOA) estimation is of great interest due to its wide applications in sonar, radar and many other areas. However, the near-field interference is always presented in the received data, which may result in degradation of DOA estimation. An approach which can suppress the near-field interference and preserve the far-field signal desired by using a spatial matrix filter is proposed in this paper and some typical DOA estimation algorithms are adjusted to match the filtered data. Simulation results show that the approach can improve capability of DOA estimation under near-field inference efficiently.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1827
Author(s):  
Piotr Cofta ◽  
Kostas Karatzas ◽  
Cezary Orłowski

The growing popularity of inexpensive IoT (Internet of Things) sensor networks makes their uncertainty an important aspect of their adoption. The uncertainty determines their fitness for purpose, their perceived quality and the usefulness of information they provide. Nevertheless, neither the theory nor the industrial practice of uncertainty offer a coherent answer on how to address uncertainty of networks of this type and their components. The primary objective of this paper is to facilitate the discussion of what progress should be made regarding the theory and the practice of uncertainty of IoT sensor networks to satisfy current needs. This paper provides a structured overview of uncertainty, specifically focusing on IoT sensor networks. It positions IoT sensor networks as contrasted with professional measurement and control networks and presents their conceptual sociotechnical reference model. The reference model advises on the taxonomy of uncertainty proposed in this paper that demonstrates semantic differences between various views on uncertainty. This model also allows for identifying key challenges that should be addressed to improve the theory and practice of uncertainty in IoT sensor networks.


2011 ◽  
Vol 216 ◽  
pp. 176-180
Author(s):  
Yong Ding ◽  
Yue Mei Su

Wireless Sensor Networks functionality is closely related to network lifetime which depends on the energy consumption, so require energy- efficient protocols to improve the network lifetime. According to the analysis and summary of the current energy efficient estimation algorithms in wireless sensor network An energy-efficient algorithm is proposed,. Then this optimization algorithm proposed in the paper is adopted to improve the traditional diffusion routing protocol. Simulation results show that this algorithm is to effectively balance the network energy consumption, improve the network life-cycle and ensure the communication quality.


2011 ◽  
Vol 474-476 ◽  
pp. 828-833
Author(s):  
Wen Jun Xu ◽  
Li Juan Sun ◽  
Jian Guo ◽  
Ru Chuan Wang

In order to reduce the average path length of the wireless sensor networks (WSNs) and save the energy, in this paper, the concept of the small world is introduced into the routing designs of WSNs. So a new small world routing protocol (SWRP) is proposed. By adding a few short cut links, which are confined to a fraction of the network diameter, we construct a small world network. Then the protocol finds paths through recurrent propagations of weak and strong links. The simulation results indicate that SWRP reduces the energy consumption effectively and the average delay of the data transmission, which leads to prolong the lifetime of both the nodes and the network.


2013 ◽  
Vol 443 ◽  
pp. 392-396
Author(s):  
Peng Zhou ◽  
Chi Sheng Li

In this paper, we proposed a new symbol rate estimation algorithm for phase shift keying (PSK) and qua drawtube amplitude modulation (QAM) signals in AWGN channel First we constructe a delay-multiplied signal, from which we obtaine the modulated information. Then we calculated the instantaneous autocorrelation of the delay-multiplied signal to pick out the phase jump. To eliminate the restriction of frequency resolution in fast Fourier transform, we performed a Chirp-Z transform to find out the exact spectral line which represente the symbol rate of the signal to be analyzed. Compared with the existing algorithms, it is a simple solution that has a better performance and accuracy in low signal-to-noise-ratio channel conditions. Simulation results show that the probability of relative estimating deviation below 0.1% reaches 100% and the average and standard variance of absolute estimation deviation are at the magnitude of 10-2 when SNR is over 2dB.


2014 ◽  
Vol 22 (01) ◽  
pp. 101-121 ◽  
Author(s):  
CHUII KHIM CHONG ◽  
MOHD SABERI MOHAMAD ◽  
SAFAAI DERIS ◽  
MOHD SHAHIR SHAMSIR ◽  
LIAN EN CHAI ◽  
...  

When analyzing a metabolic pathway in a mathematical model, it is important that the essential parameters are estimated correctly. However, this process often faces few problems like when the number of unknown parameters increase, trapping of data in the local minima, repeated exposure to bad results during the search process and occurrence of noisy data. Thus, this paper intends to present an improved bee memory differential evolution (IBMDE) algorithm to solve the mentioned problems. This is a hybrid algorithm that combines the differential evolution (DE) algorithm, the Kalman filter, artificial bee colony (ABC) algorithm, and a memory feature. The aspartate and threonine biosynthesis pathway, and cell cycle pathway are the metabolic pathways used in this paper. For three production simulation pathways, the IBMDE managed to robustly produce the estimated optimal kinetic parameter values with significantly reduced errors. Besides, it also demonstrated faster convergence time compared to the Nelder–Mead (NM), simulated annealing (SA), the genetic algorithm (GA) and DE, respectively. Most importantly, the kinetic parameters that were generated by the IBMDE have improved the production rates of desired metabolites better than other estimation algorithms. Meanwhile, the results proved that the IBMDE is a reliable estimation algorithm.


2013 ◽  
Vol 330 ◽  
pp. 957-960
Author(s):  
Qiao Ling Du ◽  
Zhi Rui Wang ◽  
Yu Pei ◽  
Yi Ding Wang

This paper investigates the performance analysis of OQPSK in HF band for wireless sensor networks. An analytical model for getting symbol error rate (SER) is given in presence of Bi-Kappa noise in HF band. And the SER of OQPSK is given in AWGN and Rayleigh fading channel. Simulation results HF noise as Bi-Kappa noise should be investigated in HF band for WSN.


2013 ◽  
Vol 22 (02) ◽  
pp. 1250091
Author(s):  
XIAOFEI ZHANG ◽  
CHEN CHEN ◽  
YINGJIE HUANG ◽  
HAILANG WU ◽  
JIANFENG LI ◽  
...  

This paper links the polarization-sensitive-array parameter estimation problem to the quadrilinear model. Exploiting this link, it derives a blind joint angle, frequency and polarization estimation algorithm. The simulation results reveal that the proposed algorithm has better angle, frequency and polarization estimation performance than ESPRIT. This algorithm relies on a fundamental result of the uniqueness of low-rank four-way data decomposition. Furthermore, the proposed algorithm does not require pairing among multiple parameters. Simulation results illustrate performance of this algorithm.


Sign in / Sign up

Export Citation Format

Share Document