scholarly journals Adaptive RBF -SMC control for multi-point mooring system

2022 ◽  
Vol 355 ◽  
pp. 03063
Author(s):  
Run Lu ◽  
Guichen Zhang ◽  
Jianqiang Shi

A stable adaptive control scheme for multi-point mooring system (MPMS) with uncertain dynamics is proposed in this paper. The control scheme is designed by a hybrid controller based on RBF (Radial Basis Function) NN (Neural Network) and SMC (Sliding Mode Control), which learns the MPMS dynamic changes, and the compensation of external disturbances is realized through adaptive RBFNN control. Meanwhile the RBF-SMC control parameters are adapted by the Lyapunov method to minimize squares dynamic positioning (DP) error. The convergence of the hybrid controller is proved theoretically, and the proposed mooring control scheme is applied to the “Kantan3” mooring simulation system. Finally, the simulation results are compared with the traditional PID controller and standard RBF controller to demonstrate the effective mooring positioning performance of the control scheme for the MPMS.

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 597
Author(s):  
Brahim Brahmi ◽  
Ibrahim El Bojairami ◽  
Tanvir Ahmed ◽  
Asif Al Zubayer Swapnil ◽  
Mohammad AssadUzZaman ◽  
...  

The research presents a novel controller designed for robotic systems subject to nonlinear uncertain dynamics and external disturbances. The control scheme is based on the modified super-twisting method, input/output feedback linearization, and time delay approach. In addition, to minimize the chattering phenomenon and ensure fast convergence to the selected sliding surface, a new reaching law has been integrated with the control law. The control scheme aims to provide high performance and enhanced accuracy via limiting the effects brought by the presence of uncertain dynamics. Stability analysis of the closed-loop system was conducted using a powerful Lyapunov function, showing finite time convergence of the system’s errors. Lastly, experiments shaping rehabilitation tasks, as performed by healthy subjects, demonstrated the controller’s efficiency given its uncertain nonlinear dynamics and the external disturbances involved.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Ji Min Lee ◽  
Sung Hwan Park ◽  
Jong Shik Kim

A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Jinghui Zhang ◽  
Guoqiang Zeng ◽  
Shifeng Zhang

This paper presents a novel nonlinear sliding mode control scheme that combines on-line model modification, a nonlinear sliding mode controller, and a disturbance observer to solve the essential problems in spacecraft electromagnetic docking control, such as model uncertainties, unknown external disturbances, and inherent strong nonlinearity and coupling. An improved far-field model of electromagnetic force which is much more accurate than the widely used far-field model is proposed to enable the model parameters to be on-line self-adjusting. Then, the relationship between magnetic moment allocation and energy consumption is derived, and the optimal direction of the magnetic moment vector is obtained. Based on the proposed improved far-field model and the research results of magnetic moment allocation law, a fast-nonsingular terminal mode controller driven by a disturbance observer is designed in the presence of model uncertainties and external disturbances. The proposed control method is guaranteed to be chattering-free and to possess superior properties such as finite-time convergence, high-precision tracking, and strong robustness. Two simulation scenarios are conducted to illustrate the necessity of modifying the far-field model and the effectiveness of the proposed control scheme. The simulation results indicate the realization of electromagnetic soft docking and validate the merits of the proposed control scheme. In the end of this paper, some conclusions are drawn.


2013 ◽  
Vol 709 ◽  
pp. 583-588
Author(s):  
Jin Hua Ye ◽  
Di Li ◽  
Shi Yong Wang ◽  
Feng Ye

This paper develops a high performance guidance controller for automated guided vehicle (AGV) with nonholonomic constraint. In this controller, the path following method in the Serret-Frenet frame is used for driving the AGV onto a predefined path at a constant forward speed. Moreover, a first order dynamic sliding mode controller is proposed, not only to overcome the impact of unknown model uncertainties and external disturbances of the system, but also to weaken the chattering in the standard sliding mode control. The global asymptotic stability and robustness of the system is proven by the Lyapunov theory and LaSalles invariance principle. Simulation results show the validity of the proposed guidance control scheme.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hua Chen ◽  
Wen Chen ◽  
Binwu Zhang ◽  
Haitao Cao

A second-order sliding mode (SOSM) controller is proposed to synchronize a class of incommensurate fractional-order chaotic systems with model uncertainties and external disturbances. Based on the chattering free SOSM control scheme, it can be rigorously proved that the dynamics of the synchronization error is globally asymptotically stable by using the Lyapunov stability theorem. Finally, numerical examples are provided to illustrate the effectiveness of the proposed controller design approach.


Author(s):  
Yi Min Zhao ◽  
Yu Lin ◽  
Fengfeng Xi ◽  
Shuai Guo ◽  
Puren Ouyang

The robotic riveting system requires a rivet robotic positioning process for rivet-in-hole insertions, which can be divided into two stages: rivet path-following and rivet spot-positioning. For the first stage, varying parameter-linear sliding surfaces are proposed to achieve robust rivet path-following against robot errors and external disturbances of the robotic riveting system. For the second stage, a second-order sliding surface is applied to attain accurate rivet spot-positioning within a finite time required by the riveting process. In order to improve the dynamic performance of the robot riveting system, the motion of robot end-effector between the two adjacent riveting spots has been properly designed. Overall, the proposed control scheme can guarantee not only the stability of the robot control system but also the robust rivet path-following and quick rivet spot-positioning in the presence of the robot errors and external disturbances of the robotic riveting system. The simulation and experimental results demonstrate the effectiveness of the proposed control scheme.


2016 ◽  
Vol 39 (3) ◽  
pp. 371-383 ◽  
Author(s):  
Alireza Modirrousta ◽  
Mahdi Khodabandeh

This paper proposes two different adaptive robust sliding mode controllers for attitude, altitude and position control of a quadrotor. Firstly, it proposes a backstepping non-singular terminal sliding mode control with an adaptive algorithm that is applied to the quadrotor for free chattering, finite time convergence and robust aims. In this control scheme instead of regular control input, the derivative of the control input is achieved from a non-singular terminal second-layer sliding surface. An adaptive tuning method is utilized to deal with the external disturbances whose upper bounds are not required to be known in advance in the inner loop. Secondly, a nonlinear disturbance observer based on the integral sliding mode with adaptive gains is proposed for position control, which is known as the outer loop. Stability and robustness of the proposed controller are proved by using the classical Lyapunov criterion. The simulation results demonstrate the validation of the proposed control scheme.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2316
Author(s):  
Quang Van Vu ◽  
Tuan Anh Dinh ◽  
Thien Van Nguyen ◽  
Hoang Viet Tran ◽  
Hai Xuan Le ◽  
...  

The paper addresses a problem of efficiently controlling an autonomous underwater vehicle (AUV), where its typical underactuated model is considered. Due to critical uncertainties and nonlinearities in the system caused by unavoidable external disturbances such as ocean currents when it operates, it is paramount to robustly maintain motions of the vehicle over time as expected. Therefore, it is proposed to employ the hierarchical sliding mode control technique to design the closed-loop control scheme for the device. However, exactly determining parameters of the AUV control system is impractical since its nonlinearities and external disturbances can vary those parameters over time. Thus, it is proposed to exploit neural networks to develop an adaptive learning mechanism that allows the system to learn its parameters adaptively. More importantly, stability of the AUV system controlled by the proposed approach is theoretically proved to be guaranteed by the use of the Lyapunov theory. Effectiveness of the proposed control scheme was verified by the experiments implemented in a synthetic environment, where the obtained results are highly promising.


2020 ◽  
Vol 11 (3) ◽  
pp. 53
Author(s):  
Wei Huang ◽  
Jianfeng Huang ◽  
Chengliang Yin

Precise motor speed regulation control is essential to achieve a good gear shifting quality of the integrated motor-transmission (IMT) system, in which the relative speed between outgoing shaft and the gearwheel to be engaged can be eliminated directly through regulation of the motor speed. The speed regulation control confronts the difficulty that there exist external disturbances on the motor shaft, like the unknown load torque arised from bearing friction, oil shearing and oil churning, etc. To deal with these disturbances, a robust speed regulation controller combined a nominal proportional control and integral sliding mode control is proposed. The former is designed to achieve a good speed tracking performance and the latter provides functionality of disturbances rejection. The effects of different controller parameters for the robust controller design are assessed via simulations. Moreover, to verify the effectiveness of the combined control scheme in practical engineering use, experiments are carried out on a test bench with a real IMT powertrain system. Results indicate that the proposed approach can attain a rapid and smooth speed regulation process with a simple controller structure and good robustness.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jiawen Cui ◽  
Haibin Sun

The issue of fixed-time trajectory tracking control for the autonomous surface vehicles (ASVs) system with model uncertainties and external disturbances is investigated in this paper. Particularly, convergence time does not depend on initial conditions. The major contributions include the following: (1) An integral sliding mode controller (ISMC) via integral sliding mode surface is first proposed, which can ensure that the system states can follow the desired trajectory within a fixed time. (2) Unknown external disturbances are absolutely estimated by means of designing a fixed-time disturbance observer (FTDO). By combining the FTDO and ISMC techniques, a new control scheme (FTDO-ISMC) is developed, which can achieve both disturbance compensation and chattering-free condition. (3) Aiming at reconstructing the unknown nonlinear dynamics and external disturbances, a fixed-time unknown observer (FTUO) is proposed, thus providing the FTUO-ISMC scheme that finally achieves trajectory tracking of ASVs with unknown parameters. Finally, simulation tests and detailed comparisons indicate the effectiveness of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document